水晶梨病虫害防治预测模型
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金面上项目(61873156);国家自然科学基金重大研究计划重点项目(91630206)


Study on prediction model of disease and pest control of crystal pear
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    [目的]为提高水晶梨病虫害防治工作效率,进一步提升病虫害的预测效果和精度。[方法]深入研究了灰色模型(GM),利用GM对水晶梨环境因子数据进行建模得到病虫害预测公式,通过差分方程推导出时间响应式和参数估计,建立了优化初始值的灰色模型(OIVGM),将OIVGM与BP神经网络预测模型(BP)进行组合,建立了优化初始值的灰色BP神经网络预测组合模型(OIVGM-BP)。[结果]通过单位根检验法测量模型的稳定性,OIVGM-BP一阶差分处理后,T统计量(-5.487654)小于5%临界值(-2.878073),数据序列表明平稳,OIVGM-BP可以稳定进行预测。通过白噪声检验方法测量OIVGM-BP的适应性,OIVGM-BP的残差P值从第二阶开始,均大于0.05,说明OIVGM-BP的适应性较好,各阶均通过了白噪声检验。LRM、GM、TSM、BP、OIVGM-BP对梨锈病、白粉病、腐烂病、梨黄粉蚜、梨二叉蚜、梨木虱6种病虫害的预测准确率的平均值分别为70.81%、70.09%、69.74%、65.64%、83.01%,OIVGM-BP的预测准确率优于其他4种预测模型。[结论]OIVGM-BP能够对水晶梨病虫害进行有效预测,能够更好地指导农业生产。

    Abstract:

    [Aim] This study was conducted to improve the efficiency of the pest control used for crystal pears, and to build a prediction model to determine the effecctiveness of treatments against diseases and pests. [Method] The grey model (GM) was used to model environmental factors relevant for crystal pears to obtain a pest forecast. The time response formula and parameter estimation were derived through the differential equation, and a grey model (OIVGM) for optimizing the initial value was established. The OIVGM was combined with the BP neural network prediction model (BP), and this grey BP neural network prediction combination model (OIVGM-BP) was used to optimize the initial value. [Result] In this paper, the stability of the model is measured by the unit root test. After the first-order difference processing of OIVGM-BP, the T statistic ( -5.487654)is less than the 5% critical value (-2.878073). The data series is stable indicate that OIVGM-BP can predict stably. This paper measures the adaptability of OIVGM-BP by using the white noise test method. The P value of the residual of OIVGM-BP starts from the second order and is greater than 0.05, indicating that the adaptability of OIVGM-BP is good, and each order has passed the white noise test. The experimental results show that the average prediction accuracy of LRM, GM, TSM, BP and OIVGM-BP for six diseases and insect pests of pear rust, powdery mildew, rot, pear yellow aphid, pear binary aphid and pear wood lice are 70.81%, 70.09%, 69.74%, 65.64% and 83.01% respectively, the prediction accuracy of OIVGM-BP is better than the other four classical prediction models. [Conclusion] OIVGM-BP can effectively predict diseases and insect/pest infestations in crystal pears and guide agricultural production.

    参考文献
    相似文献
    引证文献
引用本文

王兴旺,郑汉垣,金凤雷.水晶梨病虫害防治预测模型[J].生物安全学报中文版,2022,31(2):171-178

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-07-08
  • 最后修改日期:2021-08-25
  • 录用日期:
  • 在线发布日期: 2022-05-27
×
《生物安全学报》
近日,有作者反映收到假冒编辑邮件,请作者仔细甄别。