Abstract:Mosquito-borne diseases, such as dengue fever and malaria, are global problems and pose a serious threat to public health. An estimated 2.5 billion people live in areas at the risk of epidemic transmission. For now, no vaccines are available against the pathogens respnsible for these diseases, and the mosquito control is considered as one of the most effective ways to reduce transmission. Mass application of pesticides could reduce the mosquito population but it also brings problems like insect resistance and environmental pollution. The release of insects with dominant lethality (RIDL) technology and other genetic control systems based on the traditional sterile insect technique (SIT) provide new strategies to control disease vector mosquitos, such as Aedes aegypti and Anopheles gambiae. Those new version of genetic control methods are species-specific and environment-friendly, and now being developed and tested worldwide. Here the principle and recent progress of mosquito genetic control are reviewed. The history of mosquito SIT is introduced, and the genetic control strategies including self-limiting and self-sustaining populations are also illustrated. The development, as well as laboratory and field trials of RIDL strains are described. It is suggested that genetic control strategies such as RIDL are promising methods to fight against mosquitoes carrying human diseases.