茶谷蛾成虫触角感器超微结构观察

王雪松,曲 浩,罗梓文,李晓霞,龚雪娜,玉香甩,罗美云,龙丽雪,龙亚芹* 云南省农业科学院茶叶研究所/云南省茶树种质资源创新与配套栽培技术工程研究中心/ 云南省茶学重点实验室,云南 勐海 666201

摘要:【目的】明确茶谷蛾成虫触角上感器的种类、数量、分布及形态结构。【方法】利用扫描电镜分别对 茶谷蛾雌、雄成虫触角上各类感器的超微结构进行观察。【结果】茶谷蛾触角上共分布 8 种感器,类型分 别为 Böhm 氏鬃毛(2 种亚型)、鳞形感器、刺形感器(2 种亚型)、腔锥形感器、栓锥形感器、锥形感器、毛形 感器(4 种亚型)、舌形感器。【结论】茶谷蛾雌、雄成虫触角感器存在性二型性,雌雄蛾感器种类相同,但 在感器亚型和数量上,雄蛾多于雌蛾。研究结果将为茶谷蛾通讯及行为机制的研究提供理论基础。 关键词:茶谷蛾,触角,扫描电镜;感器;超微结构

开放科学标识码 (OSID 码)

Ultrastructure of antennae sensilla of Agriophara rhombata Meyr

WANG Xuesong, QU Hao, LUO Ziwen, LI Xiaoxia, GONG Xuena, YU Xiangshuai, LUO Meiyun, LONG Lixue, LONG Yaqin*

Tea Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Technology Engineering Research Center of Tea Germplasm Innovation and Supporting Cultivation/Yunnan Provincial Key Laboratory of Tea Science, Menghai, Yunnan 666201, China

Abstract: [Aim] The purpose of this study was to clarify the types, quantity, distribution and morphological structure of sensilla on the antenna of adult tea moth (*Agriophara rhombata* Meyr). [Method] Using scanning electron microscope to observe the ultrastructure of various sensilla on the antennae of female and male adult *A. rhombata*. [Result] A total of 8 kinds of sensilla were found on the antennae of *A. rhombata*, the y were Böhm's mane (2 subtypes), scale-shaped sensilla, thorn-shaped sensilla (2 subtypes), cavity cone sensilla, bolt cone, cone, hairy (4 subtypes) and tongue. [Conclusion] There are sexual dimorphisms in the antennal sensilla of female and male adults of *A. rhombata*, and the species of sensilla in male and female moths are the same. The research will provide an experimental basis for the study of the communication and behavioral mechanism of *A. rhombata*. **Key words**: *Agriophara rhombata*; antenna; scanning electron microscope; sensilla; ultrastructure

昆虫触角在探知周围环境、寄主定位、取食、寻 偶、交配、产卵等过程中起到至关重要的作用(刘一 博等,2020; Andrea *et al.*,2012)。不同类型的感器 着生在触角表面,感受外界的物理刺激(温、湿度) 及化学刺激(植物、动物挥发的各种信息素)(马瑞 燕和杜家纬,2000; 尹文英和郦一平,1980)。通过 研究昆虫触角上的不同感器来了解不同昆虫触角 所具备的功能,有助于了解昆虫的定位机制(白津 铭等,2022),进一步探究昆虫行为,为害虫防治提 供新途径和方法(刘丽等,2022)。

茶谷蛾 Agriophara rhombata Meyr,别名茶木蛾,

属鳞翅目 Lepidoptera 谷蛾科 Tineidae,国外分布于 印度等地,国内分布于云南、海南、广东、福建、四川 和台湾等地区,为当地特有的亚热带重要茶树害 虫,尤以云南和海南发生较为严重(陈宗懋和孙晓 玲,2013; 王迎春等,2014)。其危害方式是将邻近 的成熟叶片或老熟叶片吐丝拉近,结成虫苞,匿居 其中咀食叶肉。在云南茶区,茶谷蛾最早记载于 2014年,在云南省普洱市思茅区南屏镇整碗村茶园 被发现(董祖祥,2015)。随着近几年云南生态茶园 建设的开展,该害虫在云南普洱茶区和红茶区的发 生数量呈增长趋势,且部分地区危害严重,危害区

收稿日期(Received): 2022-03-24 接受日期(Accepted): 2022-05-30

基金项目:国家自然科学基金(32160724);安徽农业大学茶树生物学与资源利用国家重点实验室开放基金(SKLTOF20200117)

作者简介:王雪松,女,助理研究员,硕士。研究方向:农业昆虫防治。E-mail: 86207892@qq.com

^{*}通信作者(Author for correspondence),龙亚芹, E-mail: longyaqin19831212@126.com

域逐年扩大。在茶谷蛾的防治中,常规的化学防治 效果不佳,不仅对天敌有杀伤力,还会污染环境、危 害人体健康(靳轩等,2021)。

本研究利用扫描电镜来观察茶谷蛾成虫触角 上的感器类型、分布及超微结构,测量了雄、雌虫触 角柄节、梗节、鞭节的长度以及各种类型感器的长 度,并对其进行功能预测与分析,为进一步研究茶 谷蛾触角化学感受机制和行为识别机制、触角在信 息素定位中的作用及引诱剂的开发提供依据。

材料与方法 1

1.1 供试材料

于 2020 年 3 月云南省普洱市思茅区南屏镇整 碗村采集茶谷蛾幼虫,带回实验室用新鲜茶叶饲养 多代,培养箱温度调至(25±1)℃,相对湿度 60%± 5%,光周期16L:8D。待幼虫化蛹后,根据蛹的大 小形态将雌雄虫分开放置,选取初羽化的雌雄成虫 各5头作为供试材料。

1.2 样品的制备与观察

取刚羽化的茶谷蛾雌雄蛾触角(各10根),用 2.5%戊二醛固定过夜,然后用 0.1 mol · L⁻¹ pH7.2 的磷酸缓冲液冲洗,经30%、50%、70%、80%和90% 乙醇梯度逐级脱水各 20 min. 无水乙醇重复 2 次, 各 20 min。临界点干燥,用导电胶将各组织样品黏

100 μm

于样品台上, JFC-1600 型真空镀膜仪喷金, 置于 SM-7900F型扫描电镜下观察拍照。

1.3 数据测量

使用 Sigma Scan ProMeasurement System 5.0 软 件测量感器长度和基部直径。每种感器重复测量 10次,测量值为平均值±标准误(mean±SE)。

结果与分析 2

2.1 茶谷蛾雌雄成虫触角的一般形态特征

茶谷蛾成虫触角呈线状,雌虫的触角在光学解 剖镜下较为光滑,雄虫的触角在光学解剖镜下能看 到左右两侧排列较为整齐的毛形感器。触角由梗 节、柄节和鞭节构成,雌虫长(8258.00±39.8) µm, 雄虫长(7606.00±26.7) µm,雌虫触角略长于雄虫。 柄节基部略微膨大,雄虫柄节长(553.33±3.23) μm, 雌虫柄节长(743.43±3.06) μm, 雌虫显著长于 雄虫;梗节相对较短,呈圆柱形,一端连接在柄节端 部凹陷的窝内,另一端连接鞭节,雄虫梗节长 (197.33±1.78) μm, 雌虫梗节长(156.24±1.45) μm;茶谷蛾触角鞭节较长,大约由 50 个亚节组成, 雄虫鞭节长(6716.77±25.65) µm, 雌虫鞭节长 (7346.68±39.83) µm。雌虫和雄虫除柄节有显著 差异外,其余部位无显著性差异。茶谷蛾触角背面 均覆盖有鳞片,并着生着大量的感器(图1)。

D

100 um

图1 茶谷蛾成虫触角一般形态

Fig.1 Antennae general morphology of A. rhombata adults

A:雌虫触角柄节和梗节;B:雌虫触角鞭节;C:雄虫触角柄节和梗节;D:雄虫触角鞭节。

A: Scape (Sc) and pedicel (Pe) of female; B: Flagellum (Fl) of female; C: Scape (Sc) and pedicel (Pe) of male; D: Flagellum (Fl) of male.

2.2 茶谷蛾触角感器的种类、形态及分布

Table ? Mornhological

茶谷蛾触角上分布有 8 种感器,分别为 Böhm 氏鬃毛(Böhm bristles, BB)(2 种亚型)、鳞形感器 (sensilla squamiformia, SSQ)、刺形感器(sensilla chaetica, SCH)(2 种亚型)、腔锥形感器(sensilla coeloclnica, SCO)、栓锥形感器(sensilla styloconica, SST)、锥形感器(sensilla basiconica, SB)、毛形感器(sensilla trichodea, ST)(4种亚型)、舌形感器(sensilla ligulate, SL)。感器大多分布于鞭节上,柄节和 梗节分布较少,具体分布情况和形态见表1。

表1	茶谷蛾成虫触角不同感器形态特征及分布	
ahara	atomictics and distribution of the consille on adult antennes of A	whombata

Table 2 Worphological characteristics and distribution of the schema of adult antennae of A. <i>Rombau</i>									
感器类型	长度	基部直径 Basal	顶端	外壁	总体形状	基窝	位置		
Sensilla type	Length∕µm	diameter∕µm	Tip	Wall	General shape	Socket	Distribution		
bb I	30.23±0.613Ca	1.85±0.003Ca	急尖	光滑	直立	窝陷	柄节基部		
			Acute	Smooth	Upright	Dent	Scape base		
BB II	19.69±0.936Cb	2.33±0.670Ca	钝圆	光滑	直立	平整	柄节		
			Blunt	Smooth	Upright	Flat	Scape		
SSQ	46.72±0.608B	2.07±0.131C	急尖	深竖纹	平直	平整	整个触角		
			Acute	Vertical stripes	Straightness	Flat	The antenna		
SCH I	78.03±2.358Ba	4.1±0.231Ca	钝尖	环状螺纹	直立	突出	鞭节		
			Blunt stylus	Ring thread	Upright	Extrude	Clavola		
SCH II	$46.60 \pm 1.170 Bb$	2.64±0.121Ca	钝尖	环状螺纹	利弯	突出	鞭节		
			Blunt stylus	Ring thread	Curved	Extrude	Flagellum		
SCO	7.11±0.175D	10.21±0.105A	钝尖	纵纹	稍弯	窝陷	鞭节		
			Blunt stylus	Longi-tudinal grain	Curved	Dent	Flagellum		
SST	28.05±2.918C	6.70±0.478B	钝尖	交错条纹	直立	窝陷	鞭节		
			Blunt stylus	Alternative stripe	Upright	Dent	Flagellum		
SB	3.61±0.254D	6.63±0.180B	钝圆	浅纵纹	直立	突出	鞭节		
			Blunt	Alter-nating stripes	Upright	Extrude	Flagellum		
ST- I	31.77±3.106D	4.62±0.671C	钝尖	交叉竖条纹	平直	窝陷	鞭节		
			Blunt stylus	Cross vertical fringe	Straightness	Dent	Flagellum		
ST-II	$76.35{\pm}5.021\mathrm{Ad}$	3.99±0.718Bc	钝尖	环状条纹	平直	窝陷	鞭节		
			Blunt stylus	Annular stripe	Straightness	Dent	Flagellum		
ST-III	244.08±2.724Ab	9.16±0.921Ba	钝圆弯曲	环状条纹	稍弯	窝陷	鞭节		
			Blunt bending	Annular stripe	Curved	Dent	Flagellum		
ST-IV	333.65±2.988Aa	$6.86{\pm}0.261\rm{Bb}$	钝尖	浅纵纹	波浪状	窝陷	鞭节		
			Blunt stylus	Longi-tudinal grain	Wavy	Dent	Flagellum		
SL	6.39±0.151D	1.51±0.357C	钝圆	光滑	弯曲	平整	鞭节末端		
			Blunt	Smooth	Curved	Flat	Flagellum		

表中数据为平均值±标准误。同一列数据后具有不同大写字母表示不同感器类型之间差异显著(P<0.05);同一列数据后具有不同小写字母同一感器不同亚型之间差异显著(P<0.05)(LSD检验、Duncan's复极差检验)。

Data in the table are mean \pm standard error. Different capital letters after the same column of data indicate significant differences between different sensory types (*P*<0.05); different lowercase letters after the same column of data indicate significant differences between different subtypes of the same sensory (*P*<0.05) (LSD test, Duncan's).

2.2.1 Böhm 氏鬃毛 Böhm 氏鬃毛形状类似于刺型感器,Schneider (1964)曾将其归为刺形感器,但相对于刺型感器更小,大多直立于触角表面,感器表面光滑,茶谷蛾触角分布有2种类型的Böhm 氏鬃毛,分别为Böhm 氏鬃毛I(BBI)和Böhm 氏鬃毛I(BBI)。

Böhm 氏鬃毛 I(图 2A)着生于柄节基部,较 Böhm 氏鬃毛 II长,着生于窝陷的凹槽内,呈直立 状,表面光滑,顶端尖细;Böhm 氏鬃毛 II(图 2B)着 生于柄节和梗节之间,较为短小,端部钝圆,垂直于 触角表面,表面无孔,不具有凹槽。

2.2.2 鳞形感器 鳞形感器紧贴于触角表面,外形 似鳞片,分布于鳞片之间,是唯一一个整个触角上都 有分布的感器,呈细梭形,顶端尖细,中部稍宽,感器 上有较深的竖条纹,条纹棱脊两侧有突起,感器基部 不具凹槽(图 2D)。

2.2.3 刺形感器 刺形感器直立于触角表面,外形 似刺,顶端钝尖,茶谷蛾触角表面分布有 2 种刺形 感器,分别为刺形感器 I (SCH I)和刺形感器 Ⅱ (SCH II)。 刺形感器 I (图 2C)分布于鞭节,与触角表面 夹角接近于 90°,由基部到顶端逐渐变细,基部感器 窝为凸出臼状,表面有横形环状螺旋条纹,到基部 逐渐变为竖形浅沟,基部类似于玉米状,感器壁无 气孔。

刺形感器Ⅱ(图 2E)较刺形感器Ⅰ短,与触角 表面夹角间于 45°~75°,基部感器窝为凸出臼状, 外形与刺形感器Ⅰ相似,只是无刺形感器Ⅰ笔直, 有小弧度。

2.2.4 腔锥形感器 腔锥形感器分布于鞭节,每鞭 节亚节有 4~6 个腔锥形感器,似半聚拢的手掌,中 心下陷形成浅圆腔,中心有一直立的锥状凸起,基 部宽大,到顶端逐渐变细,端部钝尖,表面有纵沟, 周边被 14~16 根长度不等的指状缘毛围绕,并向顶 端靠拢,缘毛间相互留有空隙,顶端钝圆,有纵形条 纹(图 2F)。

2.2.5 栓锥形感器 栓锥形感器在每个鞭节亚节 末端几乎均有一个,与触角表面呈 50°~85°夹角, 圆柱状,较粗壮,着生于玫瑰花瓣型窝陷凹槽内,整 个感器表面存在交错条纹,顶端有 1~2 个芽状凸起 (图 2F)。

2.2.6 锥形感器 锥形感器分布于鞭节亚节,基座 呈秃顶谷堆状,与触角表面近乎垂直,中心窝陷处 有一圆柱状凸起,从底部到端部有小幅变细,呈锥 状,基部外壁光滑,近顶端外壁有明显颗粒,顶端中 心有一小孔,小孔向四周散射条纹(图2G)。

2.2.7 毛形感器 毛形感器是茶谷蛾触角上数量 最多的感器类型,主要分布于鞭节各亚节的侧面和 腹面,且雄性茶谷蛾毛形感器数量明显多于雌性。 该感器着生于基窝中,呈毛形,端部直立或弯曲,表 皮具螺旋纹或具竖纹,感器壁布满小孔,小孔着生 于条纹凹槽内,根据感器长度和形状差异,可以分 为4种亚型:毛形感器I(ST-I)、毛形感器II(ST-Ⅱ)、毛形感器II(ST-II)和毛形感器IV(ST-IV) (图 2H)。

毛形感器 I(ST-I)在雌雄虫触角上均有分 布,长度最短,具有交叉性竖条纹,条纹空隙有小 孔,感器基部有凹槽,与触角表面夹角较小,呈15° ~45°,直立细条状,顶端钝尖。

毛形感器 Ⅱ(ST-Ⅱ)在雌雄虫触角上均有分布,长度间于毛形感器 Ⅰ和毛形感器 Ⅲ之间,感器

基部凹槽较浅,感器表面环状条纹,与触角表面夹 角呈 60°~75°,直立细条状,顶端较尖。

毛形感器Ⅲ(ST-Ⅲ)在雌雄虫触角上均有分 布,感器基部凹槽较毛形感器Ⅱ浅,感器表面环状 条纹,与触角表面夹角呈75°~90°,顶端钝圆弯曲。

毛形感器 IV (ST-IV) 仅存在于雄虫触角,感器 基部凹槽较浅,表面有较浅纵纹,与触角表面夹角 呈 75°~90°,顶端钝尖,感器中段呈大幅度弯曲,是 4 个亚型中最长的。

2.2.8 舌形感器 舌形感器存在于触角鞭节末端, 基部宽大,到中段变细,顶端钝圆,感器基部有折 叠,整体有小幅弯曲(图 2I)。

3 讨论

茶谷蛾幼虫通过吐丝将两片以上邻近的成熟 叶片或老熟叶片拉近黏合在一起,置身其中被包裹 起来,直至将叶片取食干净又重新更换新叶片,给 人工防治及天敌捕食造成困难。茶谷蛾属于鳞翅 目昆虫,触角是鳞翅目昆虫感觉外界刺激的主要感 觉器官,通过触角上的不同感器来感知外界的物理 和化学刺激,同时找寻食物、躲避天敌等一系列适 应性行为(李文香等,2015),以保存生命和延续种 群。本研究通过扫描电镜,观察到茶谷蛾成虫触角 表面 8 种不同类型感器,雌雄虫上都发现了与其他 鳞翅目昆虫相同类型的感器,如椰子织蛾 Opisina arenosella Walker、草地贪夜蛾 Spodoptera frugiperda (J. E. Smith)(田彩虹等,2021)、灰茶尺蠖 Ectropis grisescens Warreh (张方梅等,2021)。

结果表明,茶谷蛾雌雄成虫触角感器种类相同,但在毛形感器亚型上,雄虫比雌虫多一种。不同类型感器之间的实际长度差异显著,而且各亚型之间的长度存在显著差异。另外,毛形感器的长度显著大于其余7种感器;刺形感器与鳞形感器差异不显著,却显著大于Böhm 氏鬃毛及栓锥形感器;腔锥形感器、锥形感器及舌形感器长度最小且差异不显著;同时不同感器亚型之间差异显著。在基部直径,腔锥形感器直径显著大于其余类型感器,栓锥形感器、锥形感器及毛形感器次之且差异不显著; 其余4种类型感器直径最小且差异不显著。亚型之间仅毛形感器亚型Ⅲ、亚型Ⅳ差异显著,其余亚型不显著。

A:Böhm 氏鬃毛 I (BB I);B:Böhm 氏鬃毛 II (BB II);C:刺形感器 I (SCH I);D:鳞形感器(SSQ);E:刺形感器 II (SCH II);
F:腔锥形感器(SCO)、栓锥形感器(SST);G:锥形感器(SB);H:毛形感器 I ~ W(ST I ~ W);I:舌形感器(SL)。
A: Böhm bristles I (BB I); B: Böhm bristles II (BB II); C: Sensilla chaetica I (SCH I); D: Sensilla squamiformia (SSQ);
E: Sensilla chaetica II (SCH II); F: Sensilla coeloclnica(SCO), Sensilla styloconica(SST);
G: Sensilla basiconica (SB); H: Sensilla trichodea (ST I - W); I: Sensilla ligulate (SL)

昆虫触角上的不同感器发挥着不同的作用, Böhm 氏鬃毛(2种亚型)着生于触角柄节及柄节与 梗节交界处,主要是感受重力的感器,当昆虫受到 机械刺激时,可以控制触角的移动速度和方向,从 而在昆虫飞行时进行定位(Krishnan et al., 2012), 避免发生碰撞,从而平稳降落。刺形感器(2种亚 型)是一类接触性化学感受器,鳞行感器作用是探 测气味分子的方向,同时这2类感器也具有保护触 角的功能(Ma et al., 2016)。腔锥形感器、锥形感器 和栓锥形感器内的丰富神经,腔锥形感器和栓锥形 可感知外界温度和湿度,锥形感器可感知植物的气 味和信息素。本研究在田间观察及饲养茶谷蛾期 间,用其他当地的植物进行喂食,茶谷蛾均不取食, 可能与该感器功能相关。毛形感器(4种亚型)是 雌虫和雄虫数量上区别最大的感器,雄虫触角上的 毛形感器远远多于雌虫,二者存在性二型现象。毛 形感器IV(ST-IV)是雄虫特有的感器,长度远长于 其他感器,能够分泌和感受性信息素,雄虫依靠这

类庞大的毛形感器来寻觅雌虫进行交配(洪晓月, 2017)。舌形感器是位于整个触角的最末端,鞭节 的最后一节,关于舌形感器的研究较少,功能及作 用有待进一步研究。

本研究明确了茶谷蛾雄雌虫触角上的感器类型,并且对感器的功能进行推测。但茶谷蛾触角上 感器与其他鳞翅目昆虫的触角感器在功能方面是 否一致还有待通过分子生物学、透射电镜、触角电 位等技术做进一步研究。

参考文献

- 白津铭,廖咏梅,王斯玮,凌科幸,任立云,2022. 六斑月
 瓢虫触角及感觉器扫描电镜观察.生物安全学报,31
 (1):75-80.
- 陈宗懋, 孙晓玲, 2013. 茶树主要病虫害简明识别手册. 北 京: 中国农业出版社.
- 董祖祥,2015. 一个人和640 万条虫的战争. 农药市场信息, 541(23):57-59.

- 洪晓月, 2017. 农业昆虫学. 北京: 中国农业出版社.
- 李文香,杨玉婷,吴青君,徐宝云,王少丽,张友军,2015. 韭菜迟眼蕈蚊研究进展.植物保护,41(5):8-12.
- 刘丽,刘青钊,阎雄飞,马光昌,刘博,杨帆,阎伟,2021. 椰子织蛾触角感器的超微结构观察.环境昆虫学报,43 (4):1070-1078.
- 刘一博,刘俊峰,马烨,曾志将,何旭江,2020. 昆虫化学 通讯之谜. 应用昆虫学报,57(5):1056-1063.
- 靳轩,王海燕,胡振亮,马梦然,李继泉,崔建州,2021.微 红梢斑螟(鳞翅目:螟蛾科)成虫触角感器的扫描电镜观 察.环境昆虫学报,43(1):40-47.
- 马瑞燕,杜家纬,2000.昆虫的触角感器.昆虫知识,37 (3):179-183.
- 田彩红,黄建荣,王亚楠,张胜男,李国平,封洪强,2021. 草地贪夜蛾成虫触角感器的超微结构观察.植物保护, 47(5):216-221.
- 王迎春,王小萍,李兰英,2014. 川西茶区茶园主要病虫害 的发生规律及绿色防控措施. 湖北农业科学,53(2):330

-333, 336.

- 尹文英, 郦一平, 1980. 棉红铃虫触角感觉器的扫描电镜观 察. 昆虫学报, 23(2): 123-129.
- ANDREA D G, MAURIZI E, STACCONI M, ROMANI R, 2012. Functional structure of antennal sensilla in the myrmecophilous beetle *Paussus favieri* (Coleoptera, Carabidae, Paussini). *Micron*, 43(6): 705.
- KRISHNAN A, PRABHAKARR S, SUDARSAN S, SANE S P, 2012. The neural mechanisms of antennal positioning in flying moths. *Journal of Experimental Biology*, 215: 3096.
- MA L, BINA L, LI Z Q, CAI X M, LUO Z X, CHEN Z M, 2016. Ultrastructure of chemosensilla on antennae and tarsi of *Ectropis obliqua* (Lepidoptera: Geometridae). Annals of the Entomological Society of America, 109(4): 574-584.
- SCHNEIDER D, 1964. Insect antennae. Annual Review of Entomology: 103-122.

(责任编辑:郭莹)

