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Abstract: A major role of ecological risk assessment (ERA) has been to provide scientific guidance on whether a future human ac-
tivity will cause ecological harm, including such activities as release of a genetically modified organism (GMO) , exotic species, or
chemical pollutant into the environment. This requires the determination of the likelihoods that the activity: would cause a harm, and
would not cause a harm. In the first case, the focus is on demonstrating the presence of a harm and developing appropriate manage-
ment to mitigate such harm. This is usually evaluated using standard hypothesis analysis. In the second case, the focus is on demon-
strating the absence of a harm and supporting a decision of biosafety. While most ERA researchers have focused on finding presence
of harm, and some have wrongly associated the lack of detection of harm with biosafety, a novel approach in ERA would be to focus
on demonstrating directly the safety of the activity. Although, some researchers have suggested that retrospective power analysis can
be used to infer absence of harm, it actually provides inaccurate information about biosafety. A decision of biosafety can only be sup-
ported in a statistically sound manner by equivalence tests, described here. Using a 20% ecological equivalence standard in GMO
examples, we illustrated the use of equivalence tests for two-samples with normal or binomial data and multi-sample normal data,
and provided a spreadsheet calculator for each. In six of the eight examples, the effects of Cry toxins on a non-target organism were
equivalent to a control, supporting a decision of biosafety. These examples also showed that demonstration of equivalence does not re-
quire large sample sizes. Although more relevant ecological equivalence standards should be developed to enable equivalence tests to
become the main method to support biosafety decision making, we advocate their use for evaluating biosafety for non-target organisms
because of their direct and accurate inference regarding safety.
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responses to the test and control treatments are the
same. Rejecting the null hypothesis (that they are the
same) will lead to the conclusion that they are differ-
ent. In other words, it allows a conclusion that there is
a difference between the two treatments, but it does
not allow a conclusion that they are the same or simi-
lar. Equating the lack of statistical significance with
"no difference" or biosafety is a serious logical flaw,
because the lack of significance can be related to low
replication and/or high error variation, not because
there is truly no effect. Inability to reject the null hy-
pothesis can lead to a Type Il error ( = not rejecting
the null hypothesis when in fact the treatments are dif-
ferent). For any given estimated difference between
the treatments, as the estimated standard error of the
difference increases from 0, the result will eventually
change from an inference of significant difference to
one of equivalence, which is the opposite of what is
desired for equivalence testing. For the most part, this
problem — that the null hypothesis cannot be proved
with standard hypothesis testing — is recognized, but
because alternatives are not recognized it is largely ig-
nored (e.g., Raybould,2010).

In recent decades, however, a new branch of sta-
tistical theory, equivalence testing, has been devel-
oped to address these problems. An equivalence test
inverts the null and alternative hypotheses, so that the
null hypothesis is that the treatments are different and
the alternative hypothesis is that they are equivalent.
Thus the rejection of the null hypothesis enables a
sound statistical inference that the treatments are e-
quivalent. Equivalence tests have gained widespread
use for supporting regulatory decisions about new ge-
neric drugs, and there are now textbooks for conduc-
ting such tests (e.g., Patterson & Jones,2005). In
this paper, we summarize the statistical theory under-
lying equivalence tests, compare this approach with
standard hypothesis testing and power analysis, illus-
trate how to conduct these statistical tests with exam-
ples from ecological risk analysis experiments for tes-
ting the safety of GM crops, and suggest that equiva-

lence testing is superior to standard hypothesis testing

for assessing ecological safety. We use GM crops be-
cause we have conducted research in this area. A
spreadsheet calculator for the equivalence tests de-
scribed in this paper is provided in the supplementary
material. Even though the examples are solely related
to GMOs, the potential scope of application of equiva-
lence tests in ecological risk assessment and environ-
mental policy is quite broad ( Diamond et al.,2012;
Hanson ,2011; Kristofersson & Navrud,2005).

Statistical theory for equivalence tests

There are three kinds of equivalence tests: aver-
age equivalence, population equivalence and individu-
al equivalence (Liu & Chow,1996). Average equiva-
lence evaluates the similarity in the average response
between a test and control treatment. Population e-
quivalence evaluates the similarity in the entire statis-
tical distribution (average, variance, skew, kurtosis,
etc) of the responses to the treatments. Population e-
quivalence is a more rigorous similarity standard than
average equivalence because the average, variance,
and possibly higher statistical moments all must be sim-
ilar. Individual equivalence tests examine the similarity
in the responses to the treatments within the same indi-
viduals. This last is often used in drug testing, where
each individual is exposed to both treatments with a
suitable re-equilibration period between treatments (a
so-called two-period crossover design), and also in-
cludes other designs, such as repeated measures, and
paired designs. From such a design it is possible to e-
valuate equivalence individual by individual.

For ecological risk assessment, average equiva-
lence is the more generally applicable of the three. In-
dividual equivalence testing will be limited because it
is often be difficult to expose individuals to more than
one treatment, especially in a toxicity assay. Popula-
tion equivalence testing will also be limited because it
is usually not possible to have sufficiently high replica-
tion to test for equivalence in variance, skewness, etc.

Equivalences tests can be understood by contras-
ting them with standard hypothesis tests ( Fig.1). If

the average response of some biological entity to a test
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treatment ¢ is denoted u, and the average response to
the control treatment ( negative control) is u,, a
standard hypothesis for normally distributed data is
Hy: w/n =1 H,: w/p.<1 orp/pm,>1 [1]
where H, is the null hypothesis and H, is the alterna-
tive hypothesis. The null hypothesis is that the two

populations have the same mean, and the alternative

hypothesis is that they do not.
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Fig.1 Comparison of standard hypothesis tests
and equivalence tests for hypotheses [1] and [2]
Upper bar shows standard hypothesis test [ 1] with Hy=1 and H,
otherwise (gray region). Lower bar shows equivalence
test [ 2] with H, less than A, and greater than A,
and H, between A; and A ( gray region).

An equivalence hypothesis reverses the null and
alternative hypotheses. Using the same notation, the a-

nalogous equivalence hypothesis is

H,. AL?& or &BAU H,. A,‘<& and &<AU
[2]
where the values A, and A, are equivalence standards
set according to regulatory, statistical and biological
considerations that define how close the means must be
to be considered equivalent. The null hypothesis states
that the ratio of the averages is either less than the
lower or greater than the upper equivalence standard,
and the alternative hypothesis is that the value of the
ratio is between the two standards. Note that the hy-
pothesis that the averages are the same, is now a part
of the alternative hypothesis. The equations in [ 2] are
typically reformulated as:
Hy : 0=p,—A, p, versus H, . O<u,-A, u,
Hy: O<p,~A,u, versus H,: O>pu,=A,pu, [3]
The null hypothesis in [ 2] is rejected and the
means are equivalent if and only if both null hypothe-

ses [ 3] are rejected. For some regulatory procedures,

+20% is a commonly used equivalence standard (A, =
0.80 and A, =1.25).

When equation [ 2] is log-transformed, linear
hypotheses are produced :

Hy: 6,=n,-m, or n,—m, =6,

H,: 0,<n;-7, and 1,-7.<0, [4]
where n=In(u) and 6=1In(A). In the US and Eu-
rope, the value 6, = -0, = 0.223144 is required for
most generic drug tests, which is the same as +20%
on the untransformed scale.

Hypotheses [ 2] ~[ 4] are called intersection-u-
nion hypotheses (Berger & Hsu,1996a). The null hy-
pothesis is the intersection of two one-sided hypothe-
ses, and the alternative hypothesis is the union of two
one-sided hypotheses. A test of an intersection-union
hypothesis is called an intersection-union test ( IUT)
and is often formulated as a test of two one-sided hy-
potheses, which is called a two one-sided test
(TOST). The formulation of an equivalence test as an
IUT allows the application of some general mathemati-
cal theorems to determine the Type I error rate for
the test ( Berger, 1982; Berger & Hsu, 1996a). Al-
though it might be thought that the Type 1 error rate
for the two tests would need to be adjusted because
there are multiple tests with the same data, the theo-
rems prove that such corrections are not needed for
any of the tests discussed in this paper ( Berger,1982;
Berger & Hsu,1996a).

Another theorem ( Theorem 4, Berger & Hsu,
1996a) provides conditions for constructing confidence
intervals (or regions) on the statistical parameter(s)
so that confidence intervals (or regions) can be used
to test equivalence in lieu of hypothesis testing. If and
only if an IUT rejects the null hypothesis with a Type
I error of 0.05, the 95% confidence interval around
n,—m, will be entirely contained in the interval [ 6, ,
6,], which is called the equivalence region or inter-
val. This demonstrates the identity between hypothesis
testing and interpretation of confidence intervals and
regions. We will use this theorem to test the equiva-
lence of multiple test treatments to a single control

treatment.
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Comparison with retrospective ( observed )
power

A retrospective analysis of the statistical power of
an experiment has been proposed to address the prob-
lem of Type II error in GMO ecological risk assess-
ment (e.g., Romeis et al.,2011). The power of an
experimental design is an estimate of the probability of
not making a Type II error (not rejecting the null hy-
pothesis, when in fact it should have been rejected).
There are two kinds of power analysis; prospective and
retrospective. Prospective power analysis uses informa-
tion from previous experiments to optimize the design
of experiments yet to be conducted, and is a legitimate
and useful statistical tool ( Hoenig & Heisley,2001).
It can also be used to optimize equivalence tests.

Hoenig & Heisley (2001) provide a deep cri-
tique of retrospective power analysis. Retrospective
power analysis aims to provide an independent esti-
mate of the probability of not making a Type II error
based on the design and data of an experiment that has
already been completed, and relies on a statistic
called " observed power". Advocates for retrospective
power analysis argue that high observed power indi-
cates a low Type I error rate and therefore the null
hypothesis is more likely to be true when it is not re-
jected and there is high observed power (e.g., Romeis
et al.,2011). These arguments and inferences are log-
ically flawed because retrospective power analysis does
not provide an independent estimate of the probability
of not making a Type II error (Brosi & Biber,2009;
Nakagawa & Foster,2004; Perry et al.,2009).

Hoenig & Heisley (2001) provided a specific ex-
ample to illustrate this serious logical flaw in the use of
observed power. Suppose two similar experiments are
conducted, and neither rejects the null hypothesis,
but the observed power in the first experiment was lar-
ger than the observed power in the second one. Advo-
cates of the use of observed power may wish to infer
that the first experiment gives stronger support favoring
the null hypothesis than the second. However, this
leads to a fatal logical contradiction. Suppose the ex-

periments were tested with a one-sided t-test. Let ¢,

and ¢, be the observed test statistics from the respec-

p2
tive experiments. Because the observed power was

higher in the first experiment, this implies that ¢, >

pl
t,,, because observed power is an increasing function

of the ¢, statistic. But if z,,>t ,, then the p-values from
the experiments would have p,<p,, because a higher
test statistic has a smaller p-value. In other words, ex-
periment 1 has a smaller p-value and higher observed
power. Thus, by usual inferential standards based on
the p-value, experiment 1 gives stronger support a-
gainst the null hypothesis, because it has the lower
probability of error ( p-value), while advocates of ob-
served power would wish to infer that experiment 1
gives stronger support favoring the null hypothesis.
This has been called " the paradox of power" (Hoenig
& Heisley,2001). Inference based on observed power
leads to this serious logical error, and observed power
should not be used to infer support for or against the
null hypothesis. Observed power is not independent of
the observed p-value, because the p-value completely
determines the observed power. Reporting both the p-
value and the observed power is, in effect, reporting
the p-value twice. Instead, the better solution is to
structure the null hypothesis as an equivalence test that
allows sound statistical inference (Perry et al.,2009).
Therefore , retrospective power analysis does not address
the problem of Type II error, and cannot replace equiv-

alence testing (van der Voet et al.,2011).

Conducting equivalence tests

Equivalence tests can be conducted for many dif-
ferent experimental designs, and one area of active re-
search is extending their use for more complex designs.
Here we provide a basic introduction to equivalence
tests for some common and simple experimental de-
signs: two independent treatments and normal data,
two independent treatments and binomial data, multi-
ple independent treatments and normal data, and rep-
lication of experiments with multiple independent
treatments and normal data. We use examples for GMO
biosafety testing because we have been conducting re-

search in this area and can use real data to illustrate
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the use of equivalence tests. These examples include
only ones where no significant difference was detected
using standard hypothesis tests, and are used to illus-
trate when it is possible to conclude that there is statis-
tical equivalence supporting a biosafety decision and

when this is not possible.

Normal data

Sasabuchi ( 1980 ) first proposed a standard
TOST of normal data, and Westlake ( 1981 ) and
Schuirmann ( 1987) proposed the standard TOST of
log-normal data. Here we provide an example for nor-
mal data. Let X, C be the two sample means (test and
control treatments with m and n samples, respective-
ly), and S* be the pooled estimate of o>. The null hy-
potheses [ 3] are both rejected if

T,>t,, and Ty<-t,, [5]

X-A,C X-A,C
S/ Vm+A}/n S/ V/m+A/n
(6]

These have a Student’s ¢-distribution with v=m+

n—2 degrees of freedom. The TOST [ 3] is conducted

using the ordinary, a=0.05, one-sided t-test based on

and T}, =

where T, =

T, for the one-sided hypothesis [ 3 upper] and the or-
dinary, ae=0.05, one-sided ¢-test based on T, for the
one-sided hypothesis [ 3 lower]. A numerical example

is provided in Box 1 and the supporting information.

Binomial data

For binomial data there are several alternatives
for constructing equivalence intervals and designating
equivalence standards, based on the binomial parame-
ter, 7. They can be modeled on the arithmetic differ-
ence between the test (77;) and control (7r,) parame-
ters (7r,—r,), the proportional difference in the pa-
rameters (7r,/7,), or the proportional difference in
the odds of a response (7;(1-7.))/((1-m,)m,),
which is based on the odds ratios in each treatment.
We calculated the equivalence interval for the three
models ( arithmetic, proportional, and odds ratio ),
and expressed it as the interval of the test treatment
(;) as a function of the control treatment (7,). The

proportional difference model, which was ideal for nor-

mal data [2], is asymmetrical across the range of 7,
(Fig.2), which is problematic because equivalence
will depend on which response was chosen as the focal
response. The others are symmetric (Fig. 2), but dif-
fer near 7w, =0 or 7, = 1. Both can be justified, de-
pending on whether the absolute differences or the
difference in odds is critical. Here we provide equiva-
lence tests for arithmetic differences with sufficiently
large samples (m, n=50) , because these have a sta-
ble Type 1 error rate (Chen et al.,2000). For small

samples, exact methods are required ( Agresti,1996).
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Fig.2 Equivalence intervals for binomial data as a function
of the binomial parameter, 77, , in the control (c¢) treatment
for three different ways of designating the interval
Intervals are given for the range of the test treatment, 7r;, that would be
equivalent. Solid line: proportional odds ratios (r;,(1-7,))/((1-m;)7,);
dashed line: proportional difference in test to control treatment
(m;/7,) ; dotted line: arithmetic difference (7r;—7,). All intervals

are calculated for +20% of the control value, .

Let X,, ---, X, denote the independent binomial
responses (m, ;) to the test treatment and C,, ---,
C, denote the independent binomial responses (n,
a,) to the control treatment, where 7, and 7, are the
true response probabilities for the test and control
treatments, respectively, and m and n are the number
of independent observations for each. In addition, let
¥, be the total number of observed " positive" respon-
ses in the control treatment and x; be the number of
" positive" responses in the test treatment, so that n—
vy, and m —x;, respectively, become the number of
"negative" responses in the two treatments.

For the arithmetic difference in response proba-
bilities, the equivalence hypothesis is

Hy: A, =zm,—m, or m,—mw,ZA,

H,: A, <m,—m, and 7,—7,<A, [7]
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where A, and A, are equivalence standards determi-
ning how close 7, and 77, must be to be considered e-
quivalent. For drug testing, the standards used vary
between 10% ~20% , but here we set the standards as
A,=-0.2 and A;,=0.2, with 7, and 7, bounded by
the interval [0, 1]. More generally, the equivalence
intervals can be adjusted based on the observed values
of 7, and 7,.

A TOST for [ 7] comes from the asymptotic test
statistic for the difference between two binomial pa-
rameters, 7,—,, and is based on the following two
statistics with a standard error estimated by maximum

likelihood ( Farrington & Manning,1990) ,

[ﬁi_'ﬁ'c_AL:lz [ﬁ'i_ﬁ'c_AUJz

Zem = ) and zZpy = )

Oy Ty
X;
=
m
yC
="

., aw(1-7) (7+4) (1-7-4;)

Ty = + - [8]
where @, is calculated separately for each one-sided
test substituting either A, or A, for A;, and 7 is the u-
nique solution of a restricted maximum likelihood
problem defined as the 7 that maximizes F on a closed
interval /_ of possible 7's,

F (p)=m"(1-m)"7(mw+A,)"“(1-m-4,)"™

[ﬁ=[maX{O,—Aj€,min{l,l—AjH [9]
Zpy, and zp, , are X*-distributed with 1 degree of free-
dom. The two treatments are equivalent if both one-si-
ded tests are rejected at a predetermined level of o, u-
sually «=0.05, that is, if

Zpy ., >3.841 and z,, ,>3.841 [10]
which are the upper and lower a = 0.05 tails of the
standard normal distribution.

These quantities can be calculated from data ( see
an example in Box 2 and supporting information ) . Cal-
culating &, relies on finding 7, which can be done
using Solver in MS Excel or other powerful mathemati-
cal software, such as Mathematica and Matlab. Far-

rington & Manning ( 1990) provided a closed form so-

lution for 77 in their appendix.

Multiple comparisons to a common control treatment
In ecological risk assessment, experiments fre-
quently have more than one test treatment compared to
a single control treatment, requiring a statistical proce-
dure for making multiple comparisons. The statistical
design is a completely randomized one-way treatment
structure, x=DB+€, where X is the vector of meas-
ured responses, D is the known design matrix, 3 is a
vector of unknown fixed effects, which is estimated by
the treatment means, and € is a random error vector
with E[ €] =0. One solution is to use equivalence tests
based on confidence intervals designed for multiple
comparisons ( Berger & Hsu,1996a,1996b).

For normal data, let X,, ---, X, be the means in

K test treatments and C be the mean of the control

treatment. We would like to consider K hypotheses;

; Xi X
Hy: A,=— or —=A, and
c C
X, X
H).A<—and —<A,fori=1, ---, K [11]
C C

Each of these K hypotheses could be tested using a
TOST, but it is not possible to test all K hypotheses
simultaneously because an IUT does not allow for the
possibility of rejecting some but not all of the hypothe-
ses. In addition, because up to K hypotheses could be
true, it is necessary to have an adjustment for testing
multiple comparisons. An appropriate approach is to
construct confidence intervals for each of these K hy-
potheses. Berger & Hsu (1996a) show that if the con-
fidence interval, constructed from a TOST, is entirely
contained in the equivalence interval [A,, A, ], the
two means are equivalent. The confidence interval for
the multiple comparisons can be constructed from [ 5]
and [ 6], which give
X-A,C
—>, and —— <1,
SYVUm+A/m " S VUm+A}

where S is estimated from the variance of €. These can

X-A,C

be rearranged to give the following confidence interval

[Xl L0, Sh/ ]/ml.-IAz/nJ _[Xl Ly, Sh/ ]/mi-lﬂf,/nJi|

C Cc C C

[13]
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To reject the null hypothesis, the confidence in-
terval must be inside the equivalence interval. Note
first that the confidence interval is constructed with

t

a,v

and not the standard t,,,. Second, because
there are multiple comparisons to the same control,
Dunnett’s ¢ should be used instead of Student’s ¢ with
v=n+2,m;—(K+1) (Box 3 and supporting informa-
tion). This results in a strictly conservative test, and
more accurate p=0.05-level tests are available for bal-
anced data ( Giani & Straburger, 1994 ). Bonferroni
corrections are not appropriate because the treatment
comparisons are correlated by using the same control.
If the experiment with multiple treatments is rep-
licated several times, the same approach can be used
with some adjustments in the values because the un-
derlying statistical model is more complex. In this
case, the statistical model is x=DB+ZU+¢€, with eve-
rything defined as above with Z the design matrix for
the replication of the experiments and U is a vector of
the random effects associated with this replication. In
equation [ 137, S is calculated from the variance of €
in the new model, C and X, are least square means
across the R replications of the experiment, m, =

i

Y.m,,n=%n_, and v=n+Y .m,—R(K+1) (Box 4).

Equivalence standards and tests

An important issue for equivalence tests is the de-
termination of equivalence standards. Equivalence
standards, A, and A, (or 6, and 6,) , are determined
by a combination of regulatory, ecological and statisti-
cal considerations. The statistical considerations are
related to the sample size necessary to attain an ac-
ceptable power of the equivalence test. For example,
to test the equivalence of proportions ( equation [9]),
a sample size of 50 provides suitable power for a
standard of +20% , but this sample size is inadequate
for an equivalence standard of +10%, when a sample
size >150 would be necessary.

Ecological and regulatory considerations will de-
termine what is biologically equivalent and socially ac-
ceptable. In general, there is a large class of ecologi-

cal problems that has hardly been addressed in applied

ecology. When are two ecological systems ecologically
equivalent? How much change could occur to an eco-
logical system before it should be considered ecologi-
cally different? What are the ecologically essential
structural and functional features of an ecological sys-
tem? How much change can an ecological system tol-
erate before its essential ecological features are
harmed? How much can components of an ecological
system change without changing the ecologically essen-
tial features of the whole system in which they are em-
bedded?

We do not presume to answer these questions,
because it is likely that considerable empirical ecologi-
cal research will be necessary before meaningful an-
swers can be formulated. There exist formal theoretical
conditions under which ecological systems are equiva-
lent or nearly so (Iwasa et al.,1987,1989) , but these
conditions are so strict and narrow that they cannot be
readily implemented, and empirical criteria are nee-
ded. One approach for setting ecological equivalence
standards has been to use data from historical tests that
can be related to potentially significant effects ( Berto-
letti et al.,2007; Phillips et al.,2001). For example,
cladocerans have been extensively used to evaluate the
toxicity of aquatic pollutants. In some cases, there are
a sufficient number of laboratory toxicity bioassays that
have been associated with potential ecological effects
that it is possible to estimate the level of toxicity that
could cause environmental harm ( Bertoletti et al.,
2007). However, such data sets are uncommon, so
this approach is of limited applicability. No such data
sets exist for GMO ecological risk assessment.

Natural variability of the control treatment has
been often advocated as an approach for determining
equivalence standards ( Barrett et al.,2015; EFSA,
2010; Hong et al.,2014; Kang & Vahl,2014; Vahl &
Kang,2016; van der Voet et al.,2011). The rationale
is that if the control has high variability, then any test
treatment must be more different, because the high
variability requires a larger equivalence standard. Al-
though this may be true in food safety research, tem-

poral and spatial correlations in many ecological fac-
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tors may result in the covariance among treatment and
control responses being as important as the variance in
control response. Large positive covariance would im-
ply that the control variance overestimates the relevant
natural variance, and leaves doubt as to how to esti-
mate the relevant natural variance. More importantly,
the potential irreversibility of ecological change might
argue for tighter equivalence standards. Reversibility
may be associated with ecosystem resilience, whereas
ecological hysteresis may be indicative of irreversibility
(Biggs et al.,2009). Thus, it may be more appropri-
ate to define ecological equivalence standards in terms
of degree of concern, namely the minimum ecological
effect that is sufficient to cause harm ( Perry et al.,
2009).

The criteria for establishing ecological equiva-
lence standards should center on the ecological risks
that society wants to avoid ( Andow, 2011). Conse-
quently, human values will be an important considera-
tion in establishing ecological equivalence standards.
For example, to construct equivalence standards to e-
valuate the effects of a GM crop on a generalist biolog-
ical control agent, many of the most significant social
values are embedded in the crop/yield loss relation-
ship. As the central purpose of biological control of
crop pests is to minimize crop yield loss, the value of
biological control can be measured by the reduction in
crop yield loss from pests. With a quantitative relation-
ship between the density of a biological control agent
and the suppression of the pest population, these two
relationships can be combined so that a change in nat-
ural enemy density can be related to a change in crop
yield loss. This combined relationship can be used to
establish ecological equivalence standards related to

ecological value (Andow,2011).

Inferences from equivalence tests

To illustrate how equivalence tests can support
biosafety decisions, we use the examples in Box 1-4.
While this discussion focuses on GMO biosafety, it
should be clear that with other examples, the discus-
sion can be generalized to many areas of environmental

risk assessment. Many researchers studying GMO or Bt

toxicity have based their conclusions of biosafety on
standard hypothesis testing (e.g., Lawo et al.,2009;
Lundgren & Wiedenmann, 2002; Meissle & Romeis,
2009; Romeis et al.,2004; von Burg et al.,2010).
These researchers make claims for biosafety, but in re-
ality , they have committed the statistical error of accep-
ting the null hypothesis, by concluding that there were
no harmful effects. Here, we demonstrate how to make
sound inferences of " no effect" based on equivalence
tests. We have reanalyzed the data of eight examples to
illustrate how equivalence tests differ from standard hy-
pothesis tests (Table 1). The data were obtained from
Paula et al.(2016) , Paula & Andow (2016) and Guo
et al.(2008), and are described in detail in Box 1-4.
In all eight examples, the standard hypothesis test led
to the conclusion that an effect of the Cry toxin was not
detected (the standard null hypothesis was not rejec-
ted). The equivalence tests, using ecologically strict e-
quivalence standards of +20%, allowed us to conclude
that in six of the eight examples, the effect of the Cry
toxin was equivalent to the effect of the control. These
results enable a sound conclusion of "no effect" and
support for a biosafety determination of the Cry toxin for
Harmonia axyridis development time ( CrylF), Cy-
cloneda sanguinea development time (CrylF and com-
bined CrylAc and CrylF), and Chrysopa pallens de-
velopment time ( GK12, Nu COTN 99B, and a mix-
ture ). In other words, in these respects, Cry toxins are
"safe" for H. axyridis, C. sanguinea and Ch. pallens.
For C. sanguinea, the sample sizes for these tests were
quite modest (n=8 and n=10), which shows that e-
quivalence tests do not require large sample sizes. The
remaining two cases were also revealing, as they were
statistically indeterminate, neither rejecting the null
hypothesis for the standard test or for the equivalence
test. Development time of C. sanguinea on CrylAc was
not equivalent to the control, but this treatment had a
small sample size (n=6), and might become equiva-
lent with higher replication. Mortality of Brevicoryne
brassicae on CrylAc, had a p-value of 0.105 under the
standard hypothesis test, with mortality on CrylAc esti-

mated to be 31% compared to 19% on the control diet.
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In this case, increased replication might result in de-
tection of a significant effect of CrylAc and a determi-
nation of non-equivalence. In any event, the equiva-

lence test returned the accurate result that mortality of

B. brassicae on Cryl Ac was not equivalent to the control
and this test does not support a biosafety decision. E-
quivalence tests allow sound inference about biosafety,

while standard hypothesis tests do not.

Table 1 Comparison of results from standard hypothesis tests and equivalence tests for the examples in Box 1-4

Species Parameter Toxin Standard hypothesis test Equivalence test Source
Harmonia axyridis Development time CrylF No difference detected Equivalent Box 1
Brevicoryne brassicae Mortality CrylAc No difference detected Not equivalent Box 2
Cycloneda sanguinea Development time CrylAc No difference detected Not equivalent Box 3
Cycloneda sanguinea Development time CrylF No difference detected Equivalent Box 3
Cycloneda sanguinea Development time CrylF and CrylAc No difference detected Equivalent Box 3
Chrysopa pallens Development time GK12, CrylAb/c fusion No difference detected Equivalent Box 4
Chrysopa pallens Development time Nu COTN 99B, CrylAc No difference detected Equivalent Box 4
Chrysopa pallens Development time Mixture No difference detected Equivalent Box 4

Burden of proof

Finally, we note that equivalence statistics have
direct and significant bearing on the debates about the
burden of proof. Hobbs & Hilborn (2006) stated that
the burden of proof has traditionally been on those who
argued for regulatory intervention to stop pollution,
i.e., pollution is allowed until its harms can be prov-
en. Similarly, for invasive species risk assessment, the
potential invader is assumed to be safe until proven to
cause environmental harm ( Simberloff, 2005 ). Stand-
ard hypothesis testing is well-suited for these cases, as
it can only establish whether there is a difference,
whether there is environmental harm. However, this
approach has allowed substantial pollution and the es-
tablishment of several harmful invasive species ( Sim-
berloff,2005) , and as a general approach for environ-
mental management, it has come under considerable
criticism (e.g., Diamond et al.,2012; Hanson,2011;
Kristofersson & Navrud,2005).

In risk assessment, demonstration of biosafety is
equally important as demonstration of harm. Equiva-
lence tests are one way to establish a burden of proof
of biosafety, by requiring demonstration of equiva-
lence. However, equivalence tests are more flexible
than this simple application of a " proof of safety" con-
cept might imply. It is possible to consider the equiva-
lence standard as a function of ecological value, and
to test equivalence under different standards ( ecologi-

cal value). For example, a risk assessor could assess

whether an environmental stressor is likely to reduce
biological control of a pest thereby causing 5% more
yield loss, i.e., using a 5% equivalence standard. An
additional equivalence test could be performed to eval-
uate if the stressor is likely to be equivalent to the con-
trol at 2% or 1% yield loss levels ( more stringent e-
quivalence standards). The probability of equivalence
will decline as the standard becomes smaller, so the p-
values of the tests will increase (less likely to reject
the null hypothesis that they are different). If the p-
values of these three tests were respectively 0.02,
0.04, and 0.23, the analyst could conclude that if a
5% or 2% vyield loss can be tolerated, the stressor and
the control are equivalent with respect to their effects
on biological control, but they are not equivalent if on-
ly 1% yield loss can be tolerated. When the magnitude
of an insignificant risk can be differentiated from a sig-
nificant risk, it will be possible to develop equivalence
standards , and these can be used to establish a burden
of proof of safety in ecological risk assessment.
Equivalence tests can support a burden of proof of
safety, and this shift does not necessarily create addi-
tional assessment costs. The cost of an equivalence test
will depend primarily on the sample size and error var-
iation, which depend primarily on the planned equiva-
lence standard. A stricter equivalence standard will re-
quire a larger sample size and will have a higher cost
than a test with a more lax equivalence standard. Be-

cause ecological systems often exhibit functional re-
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dundancy (Rosenfeld,2002) , and some indirect spe-
cies interactions attenuate as the pathway lengthens
(Abrams et al.,1996) , many functionally-based eco-
logical equivalence standards may turn out to be lax.
Andow (2011) suggested that an equivalence standard
for a generalist biological control agent would probably
be larger than the standard +20%, and consequently,
the cost of an equivalence test may be substantially
lower than what is currently required under the stand-

ard hypothesis testing procedures.
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Box 1. Equivalence test for two-sample, normal data
The data originate from Paula et al. (2016) , who
used an artificial tritrophic system to test if the toxin
CrylF, which occurs in Bt maize and cotton in Brazil ,
adversely affected an important biological control agent
of agricultural pests, the coccinellid predator Harmo-
nia axyridis. This experiment measured the effect of
CrylF on larval development time of the predator. A-
phid prey ( Myzus persicae) were allowed to feed for
24 h on a holidic diet in small cages with and without
CrylF at 20 wg - mL™" diet before being exposed to
the predator. Neonate predator larvae were transferred
daily into fresh cages to consume the aphids, and de-
velopment time from neonate to pupa was recorded.
Step 1. Specify equivalence standards. Values of A,
=0.80 and A, = 1.25 were specified, which corre-
spond to £20% similarity.
Step 2. Enter the data. Let X,

untransformed development times (days) of H. axyri-

---, X, denote the

dis exposed to CrylF via M. persicae, m =39 ( test
treatment) . Let C,, ---, C, denote development times
of control H. axyridis, n=30 (control treatment). In
this example, under standard hypothesis testing, these

were not significantly different.

(Control, C;) (Test, X;)

11 9 10 11 10
11 9 11 15 10
12 11 12 13 11
12 11 9 11 10
11 11 10 14 10
12 13 11 12 10
11 9 11 10 10
13 8 10 10 9
13 9 10 10 9
12 8 7 9

11 10 11 10

12 9 9 10

13 8 10 9

10 9 13 10

11 11 13 10

Step 3. Calculate test statistics as indicated in

equation [ 6].

Statistic Value

X 10.5128
m 39

[% 10.6667
n 30
X-A,C 1.97949
X-A,C -2.8205
S 1.53772
1/ mAAL/n 0.21674
1/ mAA L/ 0.27879
T, 5.93944
Ty -6.5792

We have assumed o =0;. If 0] #0,, Welch's
t-test with Welch-Satterthwaite degrees of freedom
should be used, although there is no need to round the
calculated dfs to an integer as sometimes recommended
(USEPA,2010).

Step 4.
the example, the left tail of the ¢-distribution with a=
0.05 and »=67 is 1, ,=1.66792.

Conduct the TOST using equation [5]. For

Null hypothesis H, rejected?
Hy: Ty <t,,

H02: TL‘ =—

Alternative hypothesis
Hul: TL>ta,u
Hy: Ty<—iq,

Rejected
Rejected

a,v

Conclusion; Equivalence. The immature development
time of the predator on the CrylF treatment is equiva-

lent to that in the control treatment.
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Box 2. Equivalence test for two-sample, binomial
data

The data originate from Paula & Andow (2016) ,
who used an artificial holidic diet to test if the Bt toxin
Cryl Ac adversely affected an important non-target her-
bivore, the aphid Brevicoryne brassicae. This experi-
ment measured the effect of Cryl Ac on the survival of
reproductive apterous aphids during a three-day peri-
od. Five equal-sized apterous aphids were allowed to
feed continuously on a holidic diet in small cages with
and without CrylAc at 20 wg - mL™" diet. Twice dai-
ly, the number of dead aphids was counted, and the
data record the total number that died during the ex-
perimental period and the number that survived.
Step 1.
and A, =0.20.
Step 2.
ving and dead aphids that fed on a diet with 20 ug + mL™

Specify equivalence standards. Here A, =-0.20
Enter contingency table data. Number of survi-
CrylAc (test i) or control diet with no CrylAc. Under

standard hypothesis testing, these were not significant-

ly different (LRX*=2.63, 1 df, p=0.105).

Dead Surviving ﬁ“ Row totals
Control 13 54 0.1940 67
Test 22 48 0.3143 70
Column totals 35 102 137

Step 3. Find 7 either by maximizing the likelihood
in equation [ 10] or using formulas in Farrington &
Manning (1990, Appendix). USEPA (2010) recom-
mends using a normal approximation to the data with
arcsin-sqrt transformed 7 values and Welch's i-test.
The method described here does not rely on the normal

approximation, and therefore is suitable for smaller

sample sizes and for 7 close to 0 or 1.

Lower Upper
I [0.2, 1] [0, 0.8]
A, 0.3203 -0.0797
T 0.1915 0.3636
T 0.005714 0.005408
ZEm 17.950 1.176
Step 4. Conduct the TOST using equation [ 11], with

a critical value=3.841. In this case, z, ,>3.841 and
Zpy, <3.841.

Conclusion: Nonequivalence. The lower one-sided
test is rejected, but the upper one-sided test is not re-
jected. Therefore the two treatments are not equivalent.
The survival rate of the aphid feeding on CrylAc was

not equivalent to the control.

Box 3.

normal data

Equivalence test for multiple-sample,

The data originate from Paula et al. (2016) , who
used an artificial tritrophic system to test if the Bi tox-
ins CrylAc alone, CrylF alone, or CrylAc/CrylF to-
gether adversely affected an important biological con-
trol agent, the coccinellid predator Cycloneda sanguin-
ea. This experiment measured the effect on larval de-
velopment time of the predator from neonate to pupa,
and was designed to test if the two toxins interacted
with synergistic effects. Aphid prey ( Myzus persicae)
were allowed to feed for 24 hours before predator expo-
sure on a holidic diet in small cages with and without
CrylAc or CrylF or both together. Neonate predator
larvae were transferred daily into fresh cages to con-
sume the aphids.

Step 1.
=0.80 and A, = 1.25 were specified, which corre-

Specify equivalence standards. Values of A,

spond to £20% similarity.

Step 2. Enter data. Let X,;, ---, X, denote the un-

lis
transformed measurements on the m, larvae in the "
test treatment and C,, ---, C, denote the untrans-
formed measurements on the n larvae in the control
treatment. The data are larval development times of C.
sanguinea reared on M. persicae aphids that fed on an
artificial diet with 20 wg » mL™" CrylAc (Test 1), 20
pg » mL™" CrylF (Test 2), or both 20 pg + mL™
CrylAc and 20 pg - mL™" CrylF (Test 3). The con-
trol treatment was a control diet with no Cry toxin.
There were three test treatments, so K=3, with m, =
6, my=7, my;=12, and n=19. In this example, un-
der standard hypothesis testing, none of the test treat-

ments were significantly different from the control and

there was no interaction of the two toxins.
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Control Test 1 Test 2 Test 3 Control Test 1 Test 2 Test 3
11 9 9 9 10 11
9 7 9 10 10 11
9 8 10 10 8
10 10 9 10 9
9 8 8 9 12
10 9 7 12 9
10 7 9 8
10 8 8
10 8
12 11
Step 3.  Calculate test statistics [ 13] and find the
appropriate value for the one-tailed Dunnett’s ¢, based
on v, K and a.
Statistic Control Test 1 Test 2 Test 3
Mean 9.474 8.50 8.625 10.00
m; 19 6 8 12
X,-C -0.9737 -0.8487 0.5263
A, 0.8 0.8 0.8
Ay 1.25 1.25 1.25
S 1.16791 1.16791 1.16791
V4 l/m,»+A,%/n 0.447606 0.398352 0.342078
S Um+AL/n 0.498902 0.455233 0.406903
Cl, 0.777912 0.804236 0.964374
Cly 1.030205 1.031759 1.164016
H, not reject reject reject

The critical value for Dunnett’s ¢ was calculated
for v=41 df, K=3 comparisons, and a=0.05, using
SAS (see below). The critical value is 2.16217.

We can also determine if Test 3 is equivalent to
Test 1 and Test 2, which evaluates the hypothesis that
there is no interaction between the two toxins (all cal-

culations are not shown).

Comparison Cr, Cly,
Test 3 versus Test 1 0.73547 0.98304
Test 3 versus Test 2 0.75939 0.98585

Step 4.
tervals, CI, and CI;, with the equivalence interval
(0.80, 1.25). If the CIs are entirely within the equiv-

alence interval (0.80, 1.25), then the test treatment

Compare the lower and upper confidence in-

mean is equivalent to the control treatment.

Conclusions: (1) Test 1 is not equivalent to the con-
trol, while Test 2 and Test 3 are equivalent to the con-
trol. The development time of the predator feeding on

aphids exposed to CrylAc was not equivalent to the

control, while for the CrylF and the combination of
both toxins, they were equivalent. (2) Both Test 1
and Test 2 are not equivalent to Test 3, which implies
that the hypothesis of no interaction cannot be rejec-
ted, i.e., there might be an interaction.

Calculation of critical value, x, for one-sided
Dunnett’s ¢ using SAS:

data;

array lambda {3} ; //lambda{i} =sqrt (m,/(m,+n))

x = probmc (" dunnettl", ., 0.95, 41, 3, of
lambda 1-lambda 3) ;

Box 4.

normal data with replicated experiments

Equivalence test for multiple-sample,

The data originate from Guo et al. (2008), who
used a plant-based laboratory tritrophic system to test
if larval development time ( neonate to pupa) of an
important biological control agent, Chrysopa pallens,
differed when feeding on aphids from the cotton varie-

ties Simian 3 (control) , GK12 (with CrylAb/ArylAc
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fusion protein) , NuCOTN 99B ( CrylAc), or alter-
nately feeding on aphids from the three varieties. A-
phid prey (Aphis gossypii) were collected on excised
leaves from field plants and given to individual preda-
tors in petri dishes. Fresh aphids were supplied daily.
Step 1. Specify equivalence standards. Values of A,
=0.80 and A, = 1.25 were specified, which corre-
spond to £20% similarity.

Step 2. Enter data. Let X

denote the un-

e, X

lir s mir
transformed measurements on the m,, larvae in the ;"
test treatment and " experimental replicate, and C,,,
-+, C, denote the untransformed measurements on the
n, larvae in the r" experimental replicate for the con-
trol treatment. The data are larval development times
(days) of C. pallens reared on M. persicae aphids that
fed on cotton variety GK12 (Test 1), NCOTN 99B

(Test 2), or an alternating mixture of aphids ( Test

3). The control treatment was the non-Bt variety Simi-
an 3. There were three test treatments ( K=3) and
three replications of the experiment (R=3) with m =
19, 17, and 18, m, =18, 18, 17, m, =18, 17, 18,
and n,=19, 19, 18. In this example, under standard
hypothesis testing, none of the test treatments were

significantly different from the control, as indicated in

the ANOVA table.

Source DF SS MS F P
Treatment 3 1.896516 0.632172 2017 01126
Experimental 8 0.627450 0.078431 0250 09803
replicate
Error 204 63.923117 0.313349

Step 3. Calculate test statistics [ 13 ] and find the

appropriate value for the one-tailed Dunnett’s ¢, based

on v, K and «, as in Box 3.

Statistic Control Test 1 Test 2 Test 3
Mean 7.6257 7.7609 7.8322 7.8693
m; 56 54 53 53

X- -C 0.1351 0.2065 0.2436
A, 0.8 0.8 0.8

A, 1.25 1.25 1.25

S 0.559775 0.559775 0.559775
JVUm A /n 0.173052 0.174059 0.174059
N Um+AZ/n 0.215454 0.216263 0.216263
CI, 0.99134 1.00054 1.00540
Cly 1.05057 1.06005 1.06491
H, reject reject reject
The critical value for Dunnett’s ¢ was calculated References

for =204 df, K=3 comparisons, and a=0.05. The
critical value is 2.07698.

Step 4. Compare the lower and upper confidence in-
tervals, CI, and CI,, with the equivalence interval
(0.80, 1.25). If the CIs are entirely within the equiv-
alence interval (0.80, 1.25), then the test treatment
mean is equivalent to the control treatment.
Conclusion: Equivalence. All three Test treatments
are equivalent to the control. The larval development
time of the predator feeding on aphids exposed to Cry
toxins in Bt cotton plants was equivalent to the control

plant.
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