文章信息
- 张龙, 古丽·库尔班, 张绍会, 马小丽. 2022.
- ZHANG Long, KUERBAN·Guli, ZHANG Shaohui, MA Xiaoli. 2022.
- 鳞翅目昆虫中肠Bt杀虫蛋白受体研究进展
- Research progress on Bacillus thuringiensis insecticidal protein receptors in lepidopteran midgut
- 生物安全学报, 31(2): 103-114
- Journal of Biosafety, 31(2): 103-114.
- http://dx.doi.org/10.3969/j.issn.2095-1787.2022.02.002
文章历史
-
收稿日期(Received): 2021-08-21
接受日期(Accepted): 2021-09-28
苏云金芽孢杆菌(Bacillus thurngiensis,Bt)在芽孢形成过程中产生杀虫晶体蛋白(insecticidal crystal proteins,ICPs)和在对数生长中期分泌营养期杀虫蛋白(vegetative insecticidal proteins,Vips)(Estruch et al., 1996)。ICPs分为Cry杀虫蛋白和Cyt杀虫蛋白2类,其中,Cry杀虫蛋白是目前应用最广泛的Bt杀虫蛋白,其亚组达79个(Clairmont et al., 1998;Schnepf et al., 1998;https://camtech-bpp.ifas.ufl.edu/old_name_new_name/)。Bt杀虫蛋白只对靶标害虫(主要是鳞翅目、双翅目和鞘翅目昆虫)起作用,对人畜及生态环境无害(Sanahuja et al., 2011; Schnepf et al., 1998)。将Bt杀虫蛋白基因转到棉花Gossypium herbaceum Linn.、玉米Zea mays L.、水稻Oryza sativa L.、甘蔗Saccharum officinarum L., 、茄子Solanum melongena L.和大豆Glycine max (Linn.) Merr.等农作物中,可有效减少靶标害虫对农作物的危害。然而,自1989年小菜蛾Plutella xylostella (L.)被报道对Bt杀虫蛋白产生抗性以来(Tabashnik et al., 1990),害虫对Bt杀虫蛋白的抗性呈逐年增长的趋势。
目前, Bt杀虫蛋白杀虫机制和鳞翅目昆虫对Bt杀虫蛋白抗性机制尚未研究清楚。Bt杀虫蛋白杀虫机制主要有Bravo模型(Knowles & Ellar,1987)、Zhang模型(Zhang et al., 2005)及Jurat-Fuentes模型(Jurat-Fuentes & Adang,2006)等;昆虫对Bt杀虫蛋白抗性机制主要有促分裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路模型(康师,2018; Guo et al., 2015)和CAD错误定位(cadherin mislocalization)模型(Xiao et al., 2017)等。
目前, 普遍接受的Bt杀虫蛋白杀虫机制主要经历3个阶段:
(1) 活化。Bt原毒素(分子质量130~140 ku)被昆虫取食后以晶体形式进入中肠,随即被碱性消化液和相应蛋白水解酶识别并水解为55~65 ku的活化杀虫蛋白核心。N端测序表明, Bt杀虫蛋白的酶切位点在结构域I的螺旋α-1前端的Arg28处(Liu,2020);
(2) 结合。活化的杀虫蛋白穿过围食膜(peritrophic membrane,PM),并与昆虫中肠刷状缘膜囊泡(brush-border membrane vesicles, BBMV)受体结合。一种模型表明,Cry杀虫蛋白单体与钙黏蛋白(cadherin,CAD)结合后,会进一步加工形成杀虫蛋白低聚物(oligomer),该低聚物与氨肽酶N(aminopeptidase N,APN)或碱性磷酸酶(alkaline phosphatase,ALP)结合(Arenas et al., 2010),然后通过糖基磷脂酰肌醇(glycosylphosphatidylinositol,GPI)锚定结合到细胞膜上的蛋白质。另一种模型认为,Cry杀虫蛋白低聚物与CAD结合后通过激活腺苷酸环化酶(adenylate cyclase,AC)信号传导途径诱导程序性细胞死亡(programmed cell death,PCD)(Zhang et al., 2006)。另外,ABC转运蛋白(ATP-binding cassette transporter,ABC)也作为Bt受体而参与到鳞翅目昆虫中毒过程中,小菜蛾PxABCC2促进小菜蛾中Cry1Ac杀虫蛋白的低聚(oligomerization)和低聚物插入细胞膜中(Ocelotl et al., 2017),且PxABC与PxCAD协同促进小菜蛾Cry抗性水平(Ma et al., 2019)。
(3) 成孔。杀虫蛋白寡聚物与受体结合后被插入中肠细胞膜形成膜孔,从而改变细胞渗透性使细胞裂解死亡,进而导致昆虫死亡。
根据目前普遍接受的Bt杀虫蛋白杀虫机制,鳞翅目昆虫对Bt杀虫蛋白的抗性机制主要分为3类:①鳞翅目昆虫中肠蛋白酶活化Bt杀虫蛋白的能力改变,主要是胰蛋白酶(trypsin)和胰凝乳蛋白酶(chymotrypsin)(Guo et al., 2019;Zhang et al., 2019);②Bt活化杀虫蛋白核心(Bt activated toxin core)与鳞翅目昆虫中肠Bt受体的结合能力及结合位点数量的改变(Bravo et al., 2011;Wang et al., 2018a);③鳞翅目昆虫信号调控通路改变。目前, 普遍认为第二类是鳞翅目昆虫产生Bt抗性的最主要原因。在鳞翅目昆虫中,研究最为透彻的Bt受体是Cry受体,位于鳞翅目昆虫中肠BBMV细胞膜上,已经被证实的鳞翅目昆虫中肠Cry受体有APN、CAD、ALP、ABC等。
1 鳞翅目昆虫Bt杀虫蛋白受体 1.1 氨肽酶N氨肽酶N是最早发现的鳞翅目昆虫中肠Bt受体(Knight et al., 1994)。据研究,鳞翅目昆虫中肠APN在系统发育上分为8个族,依次命名为APN1~8(Wei et al., 2016),这些APNs都具有以下常见特征:(1)是一类可切割肽链N末端中性氨基酸的酶,常与内肽酶和羧肽酶协同发挥作用(Wang et al., 2005);(2)C端通过GPI识别并结合在鳞翅目昆虫中肠BBMV细胞膜表面(Lu & Adang,1996;Takesue et al., 1992);(3)多含有谷氨酸锌化氨肽酶(gluzincinaminopeptidase)的保守元件GAMEN基序和锌结合基序,成熟APN分子质量在90~170 ku(Pigott & Ellar,2007);(4)与Cry杀虫蛋白的结合方式不尽相同,某些APN可与多种Cry杀虫蛋白结合,而某些Cry杀虫蛋白可与多个APNs结合。
APN各族之间存在结构差异。APN5具有GAMEN基序的变化形式,其中甲硫氨酸被替换为苏氨酸(Pigott & Ellar,2007)。APN1和APN3在GPI序列的下游为苏氨酸富含区,该区域具有广泛的O-连接糖基化,被认为可能是Cry1Ac杀虫蛋白的结合位点(Knight et al., 2003),棉铃虫Helicoverpa armigera (Hübner)的HaAPN1和HaAPN2虽然都含有一个O-连接糖基化位点富集区(高美静,2017),但分别敲除棉铃虫易感品系SCD中这2个APNs基因后,对Cry1A或Cry2A杀虫蛋白的敏感性均无显著变化(Wang et al., 2020b)。鳞翅目昆虫APN主要通过与Cry杀虫蛋白结合使易感昆虫中肠细胞膜成孔而改变细胞膜的渗透性,进而导致细胞裂解。APN作为Cry杀虫蛋白的受体,含有与Cry杀虫蛋白结合的结构域或结合位点,如美国白蛾Hyphantria cunea (Drury)中肠APN3的谷氨酸锌化氨肽酶结构域可与Cry1Ac杀虫蛋白特异性结合(王翠苹等,2016)。
APN作为Cry受体, 在不同种类鳞翅目昆虫中也不相同,有的鳞翅目昆虫APN作为专一的Cry受体,有的鳞翅目昆虫APN却不与某种Cry杀虫蛋白唯一结合。家蚕Bombyx mori L. BmAPN6 (林平等,2018)和二点委夜蛾Athetis lepigone Mschler AlAPN5 (Wang et al., 2017)都仅作为Cry1Ac杀虫蛋白的功能性受体,而水稻害虫二化螟Chilo suppressalis Walker CsAPN6和CsAPN8都参与了Cry1Ac/Cry1Ab和Cry1Ca杀虫蛋白的毒性作用(Sun et al., 2020)。
不同种类鳞翅目昆虫在不同发育阶段及不同部位、不同APNs的表达量也不尽相同。水稻二化螟CsAPN6在4龄期前肠中高表达,而CsAPN8在成虫和蛹中高表达(Sun et al., 2020);甘蔗二点螟Chilo infuscatellus Snellen CiAPN1、CiAPN2、CiAPN3、CiAPN4、CiAPN7和CiAPN8在6龄期表达水平最高,而在5龄期的表达水平较低(Wang et al., 2019a);在棉铃虫中,除HaAPN7等少数APN外,其他HaAPNs在中肠组织中均高表达(高美静,2017)。
1.2 钙黏蛋白钙黏蛋白是定位于昆虫中肠BBMV上重要的Cry受体,CAD首次在烟草天蛾Manduca sexta (L.)中被鉴定为Bt受体(Vadlamudi et al., 1995)。CAD为单链糖蛋白,其糖基化对于Bt杀虫蛋白与之结合至关重要。鳞翅目昆虫CAD结构相似,常以单跨膜结构域锚定在细胞膜上,其结构一般包括一个N末端信号肽(signal peptide,SIG)、8~12个钙黏蛋白重复序列(cadherin repeats,CR)、一个膜近端细胞外结构域(membrane-proximal extracellular domain,MPED)、一个跨膜结构域(transmembrane domain,TM)和一个细胞质结构域(cytoplasmic domain,CYTO),有的鳞翅目昆虫CAD还有前蛋白区(proprotein region,PRO),大多数鳞翅目昆虫Cry杀虫蛋白结合域(toxin binding domain,TBD)位于膜近端CR7-MPED附近。CAD至少有6个亚家族(Nollet et al., 2000),最初被认为是细胞黏附分子,现已知CAD参与细胞识别、细胞信号传导、细胞通讯和形态发生等多个生物学过程(Angst et al., 2001)。
CAD与Cry杀虫蛋白结合后通过促进Cry杀虫蛋白N末端区域的去除而诱导Cry杀虫蛋白低聚,从而有利于Cry杀虫蛋白低聚物与APN或ALP结合。Cad基因突变多为隐性等位基因遗传,并导致CR区域内发生变化,这种突变通常仅由几个或几十个氨基酸的取代、插入或缺失导致。棉红铃虫Pectinophora gossypiella (Saunders)的Cry1Ac抗性与PgCAD 3个氨基酸取代(I1100V、I1107T和K1682R)(Fabrick et al., 2019),或PgCad基因中插入3370 bp (r15)碱基(Wang et al., 2019c)密切相关。烟芽夜蛾Heliothis virescens (F.)和烟草天蛾的CAD氨基酸序列中的Leu (1425)和Phe (1429)对CAD与Cry1Ac杀虫蛋白相互作用至关重要(Xie et al., 2005)。棉铃虫HaCad等位基因r15突变导致CYTO中55个氨基酸残基缺失,体外表达的突变型HaCAD没有Cry1Ac杀虫蛋白的TBR,证明HaCAD赋予棉铃虫Cry1Ac抗性(Zhang,2017a)。
鳞翅目昆虫可能通过CAD错误定位赋予其Bt抗性。棉铃虫抗性品系96CAD的HaCAD包含35个氨基酸取代,其中D172G取代将造成HaCAD定位错误,即易感品系96S的HaCAD位于细胞膜上,而96CAD的HaCAD保留在内质网中,说明HaCAD定位错误可能与Cry1Ac抗性有关(Xiao et al., 2017)。棉红铃虫PgCad1(r16)外显子20中插入1545个碱基对的简并转座子后产生一个剪接错误的转录本(包含一个提前终止密码子),r16等位基因通过干扰CAD的定位导致棉红铃虫产生Cry1Ac抗性(Wang et al., 2019b)。鳞翅目昆虫还可能通过调控Cad的长链非编码RNA(long noncoding RNA,lncRNA)的表达赋予其对Bt杀虫蛋白产生抗性。棉红铃虫可能通过破坏PgCAD等位基因内含子20中的一个lncRNA (Li et al., 2019)的下调表达降低PgCAD基因(PgCad1)的转录,使得PgCAD的丰度明显降低(Fabrick et al., 2019),从而增强棉红铃虫对Cry1Ac杀虫蛋白的抗性。
另外,鳞翅目昆虫CAD还可通过其他方式赋予昆虫Bt抗性。棉红铃虫PgCad突变等位基因(具有207个碱基对缺失导致缺乏编码其跨膜结构域)通过破坏CAD的细胞运输而赋予其Cry1Ac抗性(Wang et al., 2018b); 棉铃虫HaCAD的胞外域和胞质域均参与CrylAc杀虫蛋白中毒(Zhang,2017); 澳大利亚棉铃虫Helicoverpa punctigera (Wallengren) HpCad基因剪接位点的单核苷酸多态性导致内含子的部分转录和过早产生终止密码子,但Cry1Ac结合到澳大利亚棉铃虫BBMV不受HpCad基因破坏的影响(Walsh et al., 2018)。
不同鳞翅目昆虫CAD与Bt杀虫蛋白结合能力不同,如小菜蛾PxCAD和棉铃虫HaCAD都被证实为Cry1Ac受体,但小菜蛾PxCAD与Cry1Ac的结合水平较棉铃虫HaCAD低(Gao et al., 2019)。有的鳞翅目昆虫CAD与Cry杀虫蛋白专一性结合;有的鳞翅目昆虫CAD虽可与多种Cry杀虫蛋白结合,但CAD所起的作用可能不同。体外表达的二化螟CsCAD肽(CsCad-CR11-MPED)以高亲和力特异性结合CrylAb杀虫蛋白,但不与Cry1C杀虫蛋白结合,敲除CsCAD降低了其幼虫对Cry1Ab杀虫蛋白的敏感性,但没有降低其幼虫对Cry1C杀虫蛋白的敏感性,这表明CsCAD在二化螟幼虫的Cry1Ab和Cry1C中毒过程中起着不同的作用(Du et al., 2019)。
有的鳞翅目昆虫只表达一种CAD,有的鳞翅目昆虫可表达多种CAD,且不同发育阶段和作用方式不尽相同。小菜蛾PxCAD1可使幼虫的死亡率上升,而PxCAD2则不能增强Cry1Ac杀虫蛋白的杀虫活性(龚莉君等,2016)。二化螟CsCAD1在5龄期和6龄期幼虫中肠中高表达,而CsCAD2的表达水平在每个发育阶段均相等(Zhang,2017)。
1.3 碱性磷酸酶碱性磷酸酶是一组通过水解磷酸单酯,将底物分子中的磷酸基团去除的同工金属酶,水解底物包括核酸、氨基酸、蛋白、生物碱甚至生物杀虫蛋白等,ALP在碱性环境中具有最佳活性(Vimalraj,2020)。完整的ALP分子呈现典型的α/β拓扑结构,与很多分泌蛋白一样,ALP在细胞质内合成N末端带有信号肽的前体,信号肽引导前体跨内膜运输后被切除,形成同源二聚体(Ren et al., 2017)。同一昆虫中以不同形式存在的ALP具有不同的作用,如家蚕中肠中存在膜结合ALP (membrane bound ALP,m-ALP,通过GPI锚定在细胞膜上,参与营养物质的消化吸收)和可溶性ALP (soluble forms ALP,s-ALP,位于杯状细胞内腔,参与离子平衡调控)2种ALP同工酶(何华伟等,2017;Yamamoto et al., 1991)。ALP已被证实存在于鳞翅目、同翅目、双翅目、膜翅目和直翅目等昆虫中,但目前鳞翅目昆虫中ALP的研究较有限。
鳞翅目昆虫m-ALP作为Bt受体,通过GPI锚定在昆虫中肠BBMV细胞膜表面,m-ALP与被CAD诱导的Bt杀虫蛋白低聚物结合有助于后者插入细胞膜导致细胞成孔死亡,m-ALP突变导致鳞翅目昆虫对Bt杀虫蛋白产生抗性(Ren et al., 2017)。鳞翅目昆虫体内的m-ALP曾被认为是Cry1Ac杀虫蛋白的专一性受体,如美洲棉铃虫Helicoverpa zea (Boddie) HzALP2是Cry1Ac杀虫蛋白的受体(Wei et al., 2019a),亚洲玉米螟Ostrinia furnacalis Guenee OfALP的一个37 ku片段(D173~D473残基)能够与Cry1Ac杀虫蛋白结合(Jin et al., 2015)。但有研究表明,鳞翅目昆虫体内m-ALP也可与其他Bt杀虫蛋白结合,异源表达的草地贪夜蛾Spodoptera frugiperda (J. E. Smith) Sfm-ALP可与Cry1Fa杀虫蛋白特异性结合,且Sfm-ALP下调表达与Cry1Fa抗性有关(Jakka et al., 2016),甜菜夜蛾Spodoptera exigua Hübner SeALP1、SeALP2和SeALP4参与了Cry1Ca杀虫蛋白中毒过程(Ren et al., 2017)。
棉铃虫HaALP的Cry1Ac杀虫蛋白结合片段(HaALP1f)能增加易感品系和抗性品系在Cry1Ac杀虫蛋白处理下的死亡率,首次证明ALP的杀虫蛋白结合片段与Bt杀虫蛋白间存在协同作用(Chen et al., 2015)。Cry1Ac杀虫蛋白可与棉铃虫HaALP上的N-乙酰半乳糖胺(N-acetyl-β-D-galactosamine,GalNAc)特异性结合,并且可以通过糖基化的改变或GalNAc的存在来防止Cry1Ac杀虫蛋白结合(Ning et al., 2010),这为棉铃虫的防治提供了一种方案。
不同种类的ALPs在鳞翅目昆虫不同发育阶段差异表达,如甘蔗二点螟CiALP2和CiALP3在幼虫2龄期和4龄期的表达量最高(Wang et al., 2019a)。甜菜夜蛾SeALP2可与活化的Cry1Ac杀虫蛋白结合,且在整个幼虫期均表达,但不同龄期的表达量差异显著,在幼虫4龄期表达量最高(袁向东等,2017)。
1.4 ABC转运蛋白ABC转运蛋白,全称ATP结合盒转运蛋白,是一类广泛存在于原核生物和真核生物体内的ATP能量驱动泵超家族,对离子、氨基酸、葡萄糖、多肽及杀虫蛋白等小分子进行主动跨膜转运。目前已经发现的ABC转运蛋白种类很多,采用系统发育分析方法将ABC分为ABCA~H 8个不同的亚家族,ABCB家族的成员最初被称为P-糖蛋白(P-glycoprotein,P-gp)(Heckel,2012;Jeong et al., 2015)。
ABC是膜整合蛋白,其完整结构包括高度保守的2个跨膜结构域(transmembrane domain,TMD)和2个胞质侧核苷酸结合域(nucleotide-binding domain,NBD)2部分。TMD形成水性通道,含有底物结合位点,通常包含几个跨膜螺旋,如小菜蛾PxABCC2和PxABCC3的2个跨膜结构域(TMD1和TMD2)都具有6个跨膜螺旋(Baxter et al., 2011;Liu et al., 2020b),相邻跨膜螺旋在胞外侧形成胞外环(extracellular loops,ECLs)。NBD将ATP的结合水解与物质运输相偶联,具有几个保守基序:walker A基序、Q环、signature基序和walker B基序(Heckel,2012;Liu et al., 2020b)。每种ABC都有底物特异性,ABC各成员之间既存在共性,又存在差异。另外,有的ABC仅由一个TMD和一个NBD组成,但依然能行使完整ABC功能。
自2011年小菜蛾PxABCC2首次被报道作为Cry1Ac杀虫蛋白的受体以来(Baxter et al., 2011),鳞翅目昆虫ABC家族被认为是Bt杀虫蛋白的受体而受到越来越多的关注。棉红铃虫PgABCA2与Cry2Ab抗性有关(Mathew et al., 2018);草地贪夜蛾SfABCC2是Cry1Fa杀虫蛋白和Cry1A.105杀虫蛋白的受体(Flagel et al., 2018);亚洲玉米螟Cry1Ab和Cry1Ac抗性品系中OfAbcg基因的转录显著下调(Zhang,2017b);棉铃虫HaABCC1跨膜区TMD1和TMD2片段蛋白均能与活化的Cry1Ac杀虫蛋白在体外结合,且抗性品系HaABCC1的表达量显著降低(陈琳等,2019)。
已知ABC主要存在于鳞翅目昆虫中肠BBMV中,其作用机制尚有许多不明之处。在小菜蛾中,PxABCC2促进Cry1Ac杀虫蛋白的低聚并促进低聚物插入细胞膜中(Ocelotl et al., 2017)。在鳞翅目昆虫中研究较为深入的是ABCC2和ABCC3,可能主要作为各种Cry1杀虫蛋白的受体(Endo et al., 2017),ABCC2和ABCC3的ECLs起到关键作用。一些鳞翅目昆虫ABCC2的ECL1的单个氨基酸残基的不同[草地贪夜蛾SfABCC2的氨基酸Q(125)、斜纹夜蛾Spodoptera litura (Fab.) SlABCC2的氨基酸E(125)及棉铃虫HaABCC2氨基酸Q(122)]导致其对Cry1Ac杀虫蛋白的敏感性不同(Liu et al., 2018),SfABCC2也作为Cry1F的功能性受体(Jin et al., 2021)。家蚕BmABCC2的ECL2上的234位的酪氨酸插入赋予家蚕Cry1Ab杀虫蛋白和Cry1Ac抗性(Tanaka et al., 2013);BmABCC2突变体的ECL4的(DYWL773)-D-770包含与CrylAa的假定结合位点(Tanaka et al., 2017)。构建的BmABCC3突变体(其中包含家蚕Cry1Ab易感品系ABCC2的胞外环ECL1或ECL3 3个氨基酸残基的插入)对Cry1Aa杀虫蛋白和Cry1Ab杀虫蛋白的活性增加,而在家蚕Cry1Ab抗性品系ABCC2的ECL2插入一个Tyr残基后,与Cry1Ab杀虫蛋白的亲和力降低,但对Cry1Aa的结合力却显著升高,这表明BmABCC的ECL结构决定了其对Cry杀虫蛋白的特异性(Endo et al., 2018)。
ABCC2和ABCC3在鳞翅目昆虫Bt杀虫蛋白抗性机制中可能存在某种替代关系。棉铃虫HaAbcc2或HaAbcc3的单突变几乎没有影响其对Cry1Ac杀虫蛋白的敏感性,而HaAbcc2和HaAbcc3的双突变导致棉铃虫Cry1Ac抗性增强超过15000倍,说明HaABCC2或HaABCC3单独存在就足以使棉铃虫对Cry1Ac杀虫蛋白敏感(Wang,2020c)。在小菜蛾中也有相似的结果,小菜蛾敏感品系(G88)中同时发生PxAbcc2和PxAbcc3组合突变使得小菜蛾产生比PxAbcc2突变(PxAbcc2内含子6的3′剪接点的点突变导致PxAbcc2错接)或PxAbcc3突变(PxAbcc3的cDNA在2131处的点突变导致PxAbcc3过早终止)更高水平的Cry1Ac抗性(Liu et al., 2020b)。
鳞翅目昆虫中肠ABC的表达受到多种因素的调控。小菜蛾的Cry1A抗性与MAPK信号通路上游的四级信号级联放大(MAP4K4)基因转录激活后反式调控多个中肠Cry1Ac抗性基因差异表达相关,这些抗性基因包括PxAbcc1-3、PxAbcg1和Pxm-Alp等(康师,2018)。叉头框蛋白A(forkhead box protein A,FoxA)可上调棉铃虫HaAbcc2基因和斜纹夜蛾SlAbcc3基因的表达,而较低的FoxA表达与鳞翅目昆虫幼虫Cry抗性相关(Li et al., 2017)。从棉铃虫、小菜蛾和斜纹夜蛾3种鳞翅目昆虫的Abcc2的编码序列(coding sequence,CDS)中鉴定出microRNA-998-3p(或miR-998-3p)的保守靶位点,注射microRNA-998-3p拮抗剂可以显着降低3种鳞翅目昆虫ABCC2的丰度,同时增加3种幼虫的Cry1Ac抗性(Zhu et al., 2010)。
1.5 其他鳞翅目昆虫Bt受体类钙黏蛋白(cadherin-like protein,CaLP)存在于多种鳞翅目昆虫中,包括家蚕、小菜蛾、二化螟、棉铃虫、美洲棉铃虫、烟草天蛾等,CaLP参与Bt抗性的重要性可能因不同鳞翅目昆虫而异(Stevens et al., 2017),小菜蛾PxCaLP的CR7-CR11片段在变性和非变性条件下均显示有与Cry1Ac杀虫蛋白结合的能力(Hu et al., 2017)。棉铃虫四跨膜蛋白(tetraspanin)基因中的一个点突变赋予棉铃虫Cry1Ac显性抗性(Jin et al., 2018)。聚钙蛋白(polycalin,pentadecacalin)首先在家蚕中被证实为一种载脂蛋白(Mauchamp et al., 2006),在许多鳞翅目昆虫中,聚钙蛋白已被证实是Cry杀虫蛋白的结合蛋白,棉铃虫聚钙蛋白可以与Cry1Ac特异性地相互作用(Wang et al., 2020a)。ABCG4、胰蛋白酶(trypsin)、热休克蛋白70 (heat shock protein 70,HSP70)、肌动蛋白(actin)、糖基磷脂酰肌醇锚定附着蛋白1 (glycosylphosphatidylinositol anchor attachment 1 protein,GAA1)和溶质载体家族30成员1(solute carrier family 30 member 1,SLC30A1)等可能与小菜蛾对Cry1Ac杀虫蛋白的抗性有关(Xia et al., 2016)。此外,同一Bt杀虫蛋白可能与鳞翅目昆虫中肠不同BBMV受体结合,如Cry1Ab1杀虫蛋白与小菜蛾中肠液中胰蛋白酶样丝氨酸蛋白酶(trypsin-like serine proteases)和Dorsal蛋白结合,而在甜菜夜蛾中肠液中与过氧化物酶C (peroxidase-C,POX-C)结合(Lu et al., 2017)。
鳞翅目昆虫中与Vip杀虫蛋白和Cyt杀虫蛋白结合的受体研究较有限,总体而言, Vip杀虫蛋白与鳞翅目昆虫中肠受体的结合方式与Cry杀虫蛋白相似,但结合位点与Cry杀虫蛋白不同(张谦,2010;Chen et al., 2017;Lee et al., 2006)。Vip3Aa杀虫蛋白可使海灰翅夜蛾Spodoptera littoralis (Boisduval)幼虫的中肠组织细胞质空泡化、BBMV破坏和细胞解体等(Abdelkefi-Mesrati et al., 2011)。研究表明,Vip3Aa杀虫蛋白的C末端结构域(从510氨基酸到C端)是赋予Vip3蛋白质特异性的区域(Gomis-Cebolla et al., 2020)。Vip3Aa18杀虫蛋白的C端536~667区段氨基酸残基可能与昆虫中肠受体结合,而N端272~292区段氨基酸残基可能与Vip3Aa18杀虫蛋白形成穿孔有关(蔡峻等,2007)。Vip3Aa11杀虫蛋白的C端543~784区段部分氨基酸对其杀虫特异性以及杀虫毒力均具有重要作用,且不同的害虫受体所结合的Vip3Aa11杀虫蛋白氨基酸位点也不尽相同(雒国兴,2017)。
2 鳞翅目昆虫Bt受体间的相互作用在Bt杀虫蛋白杀虫机制的模型中,位于昆虫中肠BBMV上的Bt受体发挥了重要作用。在鳞翅目昆虫幼虫中,Bt杀虫蛋白与不同的肠道蛋白(包括GPI锚定蛋白APN/ALP和跨膜蛋白CAD和ABC)顺序结合形成孔前结构(pre-pore structures),CAD通过促进Bt杀虫蛋白N末端区域的去除而诱导杀虫蛋白的低聚,而APN/ALP结合则有助于低聚物插入细胞膜中,各受体之间有序排列,协同完成Bt杀虫蛋白中毒过程。某些Bt杀虫蛋白可与鳞翅目昆虫体内多种Bt受体结合,Cry1Ac杀虫蛋白可以结合昆虫中肠APNs、ALP、CaLP、ABCC2、肌动蛋白、ATPase、聚钙蛋白和一些其他以前未鉴定为Cry杀虫蛋白结合分子的蛋白,如二肽基肽酶(dipeptidyl peptidase)或羧基/胆碱酯酶(carboxyl/choline esterase)和一些丝氨酸蛋白酶(serine proteases)等(Zhou et al., 2016)。草地贪夜蛾Cry1F抗性与中肠SfALP、SfAPN、胰蛋白酶和胰凝乳蛋白酶活性降低有关(Zhu et al., 2015)。
鳞翅目昆虫中肠ABC与其他Bt受体间存在协同作用,共同赋予昆虫Bt抗性,小菜蛾的Cry1Ac抗性与PxALP、PxABCC2和PxABCC3的下调表达紧密相关(Guo et al., 2015)。在Hi5细胞中,棉铃虫HaCAD与HaABCC2共表达时可显著增强Cry1Ac杀虫蛋白对细胞的毒性,然而,斜纹夜蛾SlCAD与HaABCC2在Hi5细胞中共表达时,必须有HaCAD的TBD(特别是CR11)的参与才能使HaABCC2增强Cry1Ac杀虫蛋白的细胞毒性,由此可以推断CAD的TBD使Cry1Ac杀虫蛋白定位在与ABCC2相互作用的关键位置,从而有助于ABCC2与Cry1Ac杀虫蛋白结合(Ma et al., 2019)。在Sf9细胞中,甜菜夜蛾SeABCC2b与SeCAD1b共表达时可增强Cry1Ca杀虫蛋白的细胞毒性(Ren et al., 2016),烟芽夜蛾HvCaLP12和HvABCC2共表达时产生高Cry1A杀虫蛋白(Cry1Aa、Cry1Ab或Cry1Ac)的细胞毒性(Bretschneider et al., 2016)。这些结果都表明不同受体间的协同作用可使Bt杀虫蛋白的毒性增强,这为农业鳞翅目害虫防治提供了一种策略。
同一Bt杀虫蛋白与鳞翅目昆虫体内的Bt受体并非专一性结合,且这种非专一性结合在不同鳞翅目昆虫中也存在物种多样性。Cry1Ac杀虫蛋白与家蚕BmCaLP和BmCAD的结合位点都相同(都位于CR7、CR11和CR12)(Lin et al., 2018),Cry1Aa杀虫蛋白与家蚕BmABCC2和BmCaLP受体(BtR175)的结合位点相同,但是家蚕BmABCC2突变对CrylAa杀虫蛋白的抗性比BmCaLP突变高1000倍(Adegawa et al., 2017;Tanaka et al., 2013)。
3 展望研究鳞翅目昆虫Bt杀虫蛋白受体对抗性机理研究具有重要意义,有助于为鳞翅目害虫防治提供科学有效的措施,为农业害虫绿色防控提供参考。在Bt杀虫蛋白杀虫机制的模型中,位于鳞翅目昆虫中肠BBMV上的Bt受体之间有序排列,协同完成Bt杀虫蛋白中毒过程,整个过程受到昆虫机体的精密调控(Gómez et al., 2014),如棉铃虫GATA转录因子(HaGATAe)可以增强棉铃虫Cry1Ac受体基因的转录活性(Wei et al., 2019),但是,目前关于这方面的研究较为有限。需要强调的是,鳞翅目昆虫体内还存在其他物质参与Bt杀虫蛋白中毒过程,如棉铃虫钙调磷酸酶(calcineurin,CAN)可能通过去磷酸酶活性调节免疫基因表达而增强Cry1Ac杀虫蛋白对棉铃虫的杀虫活性(Wei et al., 2021)。建议在今后的研究中,以家蚕或小菜蛾等鳞翅目昆虫为模式生物进行深入研究,阐明其对Bt杀虫蛋白产生抗性的机制,为研究其他鳞翅目昆虫对Bt杀虫蛋白产生抗性的机制提供参考。
鳞翅目昆虫中肠受体的下调表达或错误表达可以降低其对Bt杀虫蛋白的敏感性,从而阻止或减轻鳞翅目昆虫对转Bt基因作物的危害。在棉铃虫中,HaAPN1和HaCAD表达量的下降与其Bt抗性相关,且在不同幼虫龄期表达量不同(张涛等,2011)。但鳞翅目昆虫Bt抗性机制尚未完全阐释清楚,每种模型都有待验证或完善之处,随着研究的深入,或许还有其他Bt抗性机制或Bt受体有待发现,且鳞翅目昆虫Bt显性抗性机制与Bt隐形抗性机制有区别(金琳,2017)。由于Bt杀虫蛋白杀虫机制和相应的鳞翅目昆虫Bt抗性机制复杂,即使采用先进的分子生物学方法完全阻断鳞翅目昆虫中肠已知受体的表达,也不确定能取得效果,且在生产中是相当复杂的工作。尽管如此,这一领域仍具有较大的研究价值和现实意义,阐明鳞翅目昆虫的Bt抗性机理,可以为相关害虫的防治提供理论基础,为解决鳞翅目害虫对转Bt基因作物的危害提出建设性方案。
鳞翅目昆虫Bt受体相关研究可为鳞翅目害虫防治提供相应策略,如同时使用多种Bt杀虫蛋白的混合策略(或多基因组合策略),该防治策略可明显增强鳞翅目昆虫对Bt杀虫蛋白的敏感性。共表达Vip3AcAa杀虫蛋白和Cry1Ac杀虫蛋白的转基因棉花可有效防治抗Cry1Ac杀虫蛋白的棉铃虫(Chen et al., 2017)。同时,鳞翅目昆虫中也存在不同Bt受体间的协同作用以增强鳞翅目昆虫对Bt杀虫蛋白的抗性,如CAD和ABC(张丹丹,2019;Ma et al., 2019),但这些受体间是如何进行协同作用,彼此间的作用机制存在怎样的差别,还有待明确。尽管不同鳞翅目昆虫间中肠Bt受体与Bt杀虫蛋白结合存在差异,但无论如何,多基因组合策略依旧是今后一段时间Bt杀虫蛋白应用于田间鳞翅目昆虫防治的发展方向。
蔡峻, 滑东辉, 肖亮, 严冰, 陈月华. 2007. 新vip3Aa基因的克隆、表达及其序列分析. 微生物学通报, 34(4): 672-675. DOI:10.3969/j.issn.0253-2654.2007.04.013 |
陈琳, 魏纪珍, 刘臣, 牛琳琳, 张彩虹, 梁革梅. 2019. 棉铃虫中肠特异性结合蛋白ABCC1对Cry1Ac毒力的影响. 中国农业科学, 52(19): 3337-3345. DOI:10.3864/j.issn.0578-1752.2019.19.005 |
高美静, 2017. 棉铃虫LF256品系对Cry1Ac抗性机理的研究及APN家族基因的特征分析. 博士学位论文. 南京: 南京农业大学.
|
龚莉君, 彭鹏, 袁哲明, 柳傲, 杨中侠. 2016. 小菜蛾钙黏蛋白片段对Cry1Ac蛋白的增效作用. 植物保护, 42(3): 45-51. DOI:10.3969/j.issn.0529-1542.2016.03.007 |
何华伟, 王叶菁, 侯丽, 李瑜, 位曙光, 赵朋, 蒋文超, 赵萍. 2017. 家蚕碱性磷酸酶原核表达纯化、结构与活性分析. 中国农业科学, 50(14): 2837-2850. DOI:10.3864/j.issn.0578-1752.2017.14.019 |
金琳, 2017. 自然庇护所对棉铃虫Cry1Ac抗性演化的影响及显性Bt抗性基因的鉴定. 博士学位论文. 南京: 南京农业大学.
|
康师, 2018. MAPK信号途径调控小菜蛾Bt Cry1Ac抗性的分子机制研究. 博士学位论文. 北京: 中国农业科学院.
|
林平, 程廷才, 冯铁山, 龚娇, 刘春, 夏庆友. 2018. 家蚕氨肽酶和类钙黏蛋白与苏云金芽孢杆菌Cry1Ac毒素相互作用. 生物工程学报, 34(11): 1809-1822. |
雒国兴, 2017. Bt Vip3Aa11蛋白羧基端点突变对其杀虫活性和敏感性的影响. 硕士学位论文. 哈尔滨: 东北农业大学.
|
王翠苹, 赵丹, 李少雅, 郭家萍, 郭巍, 陆秀君. 2016. 美国白蛾hcapn3基因的克隆及HcAPN3蛋白与Cry1Ac结合特性分析. 植物保护, 42(2): 62-67. DOI:10.3969/j.issn.0529-1542.2016.02.010 |
袁向东, 张万娜, 赵曼, 梁革梅. 2017. 甜菜夜蛾中肠碱性磷酸酶alp2基因的克隆、表达及功能分析. 植物保护学报, 44(1): 8-15. |
张丹丹, 2019. 棉铃虫ABCC2和Cadherin基因变异品系的构建及其对Bt抗性的研究. 博士学位论文. 北京: 中国农业科学院.
|
张谦, 2010. 不同Bt抗性品系棉铃虫对Vip3Aa的交互抗性研究. 硕士学位论文. 北京: 中国农业科学院.
|
张涛, 魏纪珍, 张丽丽, 陆琼, 梁革梅, 杨朗. 2011. Bt抗性和敏感棉铃虫钙黏蛋白及氨肽酶N1表达量的比较. 植物保护, 37(6): 69-74. DOI:10.3969/j.issn.0529-1542.2011.06.012 |
ABDELKEFI-MESRATI L, BOUKEDI H, DAMMAK-KARRAY M, SELLAMI-BOUDAWARA T, JAOUA S, TOUNSI S. 2011. Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. Journal of Invertebrate Pathology, 106(2): 250-254. DOI:10.1016/j.jip.2010.10.002 |
ADEGAWA S, NAKAMA Y, ENDO H, SHINKAWA N, KIKUTA S, SATO R. 2017. The domain Ⅱ loops of Bacillus thuringiensis Cry1Aa form an overlapping interaction site for two Bombyx mori larvae functional receptors, ABC transporter C2 and cadherin-like receptor. Biochimica et Biophysica Acta-Proteins and Proteomics, 1865(2): 220-231. DOI:10.1016/j.bbapap.2016.11.011 |
ANGST B D, MARCOZZI C, MAGEE A I. 2001. The cadherin superfamily: diversity in form and function. Journal of Cell Science, 114(4): 629-641. DOI:10.1242/jcs.114.4.629 |
ARENAS I, BRAVO A, SOBERÓN M, GÓMEZ I. 2010. Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis Cry1Ab toxin. The Journal of Biological Chemistry, 285(17): 12497-12503. DOI:10.1074/jbc.M109.085266 |
BAXTER S W, BADENES-PÉREZ F R, MORRISON A, VOGEL H, CRICKMORE N, KAIN W, WANG P, HECKEL D G, JIGGINS C D. 2011. Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera. Genetics, 189(2): 675-679. DOI:10.1534/genetics.111.130971 |
BRAVO A, LIKITVIVATANAVONG S, GILL S S, SOBERÓN M. 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology, 41(7): 423-431. DOI:10.1016/j.ibmb.2011.02.006 |
BRETSCHNEIDER A, HECKEL D G, PAUCHET Y. 2016. Three toxins, two receptors, one mechanism: mode of action of Cry1A toxins from Bacillus thuringiensis in Heliothis virescens. Insect Biochemistry and Molecular Biology, 76: 109-117. DOI:10.1016/j.ibmb.2016.07.008 |
CHEN W B, LIU C X, XIAO Y T, ZHANG D D, ZHANG Y D, LI X C, TABASHNIK B E, WU K M. 2015. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera. PLoS ONE, 10(4): e0126288. DOI:10.1371/journal.pone.0126288 |
CHEN W B, LU G Q, CHENG H M, LIU C X, XIAO Y T, XU C, SHEN Z C, SOBERÓN M, BRAVO A, WU K M. 2017. Transgenic cotton co-expressing chimeric Vip3AcAa and Cry1Ac confers effective protection against Cry1Ac-resistant cotton bollworm. Transgenic Research, 26(6): 763-774. DOI:10.1007/s11248-017-0048-8 |
CLAIRMONT F R, MILNE R E, PHAM V T, CARRIÈRE M B, KAPLAN H. 1998. Role of DNA in the activation of the Cry1A insecticidal crystal protein from Bacillus thuringiensis. Journal of Biological Chemistry, 273(15): 9292-9296. DOI:10.1074/jbc.273.15.9292 |
DU L X, CHEN G, HAN L Z, PENG Y F. 2019. Cadherin CsCad plays differential functional roles in Cry1Ab and Cry1C intoxication in Chilo suppressalis. Scientific Reports, 9(1): 8507-8517. DOI:10.1038/s41598-019-44451-5 |
ENDO H, TANAKA S, ADEGAWA S, ICHINO F, TABUNOKI H, KIKUTA S, SATO R. 2018. Extracellular loop structures in silkworm ABCC transporters determine their specificities for Bacillus thuringiensis Cry toxins. Journal of Biological Chemistry, 293(22): 8569-8577. DOI:10.1074/jbc.RA118.001761 |
ENDO H, TANAKA S, IMAMURA K, ADEGAWA S, KIKUTA S, SATO R. 2017. Cry toxin specificities of insect ABCC transporters closely related to lepidopteran ABCC2 transporters. Peptides, 98: 86-92. DOI:10.1016/j.peptides.2017.04.003 |
FABRICK J A, MATHEW L G, LEROY D M, HULL J J, UNNITHAN G C, YELICH A J, CARRIÈRE Y, LI X C, TABASHNIK B E. 2019. Reduced cadherin expression associated with resistance to Bt toxin Cry1Ac in pink bollworm. Pest Management Science, 76(1): 67-74. |
FLAGEL L, LEE Y W, WANJUGI H, SWARUP S, BROWN A, WANG J L, KRAFT E, GREENPLATE J, SIMMONS J, ADAMS N, WANG Y, MARTINELLI S, HAAS J A, GOWDA A, HEAD G. 2018. Mutational disruption of the ABCC2 gene in fall armyworm, Spodoptera frugiperda, confers resistance to the Cry1Fa and Cry1A.105 insecticidal proteins. Scientific Reports, 8(1): 82-87. DOI:10.1038/s41598-017-18473-w |
GAO M J, DONG S, HU X D, ZHANG X, LIU Y, ZHONG J F, LU LN, WANG Y, CHEN L M, LIU X J. 2019. Roles of midgut cadherin from two moths in different Bacillus thuringiensis action mechanisms: correlation among toxin binding, cellular toxicity, and synergism. Journal of Agricultural and Food Chemistry, 67: 13237-13246. DOI:10.1021/acs.jafc.9b04563 |
GÓMEZ I, FLORES B, BRAVO A, SOBERÓN M. 2014. Bacillus thuringiensis Cry1AbMod toxin counters tolerance associated with low cadherin expression but not that associated with low alkaline phosphatase expression in Manduca sexta. Peptides, 68: 130-133. |
GOMIS-CEBOLLA J, FERREIRA D S R, WANG Y Q, CABALLERO J, CABALLERO P, HE K L, JURAT-FUENTES J L, FERRÉ J. 2020. Domain shuffling between Vip3Aa and Vip3Ca: chimera stability and insecticidal activity against European, American, African, and Asian pests. Toxins, 12(2): 99-115. DOI:10.3390/toxins12020099 |
GUO Z J, GONG L J, KANG S, ZHOU J L, SUN D, QIN J Y, GUO L, ZHU L H, BAI Y, BRAVO A, SOBERÓN M, ZHANG Y J. 2019. Comprehensive analysis of Cry1Ac protoxin activation mediated by midgut proteases in susceptible and resistant Plutella xylostella (L.). Pesticide Biochemistry and Physiology, 163: 23-30. |
GUO Z J, KANG S, CHEN D F, WU Q G, WANG S L, XIE W, ZHU X, BAXTER S W, ZHOU X, JURAT-FUENTES J L, ZHANG Y J. 2015. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth. PLoS Genetics, 11(4): e1005124. DOI:10.1371/journal.pgen.1005124 |
HECKEL D G. 2012. Learning the ABCs of Bt: ABC transporters and insect resistance to Bacillus thuringiensis provide clues to a crucial step in toxin mode of action. Pesticide Biochemistry and Physiology, 104(2): 103-110. DOI:10.1016/j.pestbp.2012.05.007 |
HU X D, ZHANG X, ZHONG J F, LIU Y, ZHANG C Z, XIE Y J, LIN M M, XU C X, LU L N, ZHU Q, LIU X J. 2017. Expression of Cry1Ac toxin-binding region in Plutella xyllostella cadherin-like receptor and studying their interaction mode by molecular docking and site-directed mutagenesis. International Journal of Biological Macromolecules, 111: 822-831. |
JAKKA S R K, GONG L, HASLER J, BANERJEE R, SHEETS J J, NARVA K, BLANCO C A, JURAT-FUENTES J L. 2016. Field-evolved mode 1 resistance of the fall armyworm to transgenic Cry1Fa-expressing corn associated with reduced Cry1Fa toxin binding and midgut alkaline phosphatase expression. Applied and Environmental Microbiology, 82(4): 1023-1034. DOI:10.1128/AEM.02871-15 |
JEONG C B, KIM B M, KANG H M, CHOI I Y, RHEE J S, LEE J S. 2015. Marine medaka ATP-binding cassette (ABC) superfamily and new insight into teleost Abch nomenclature. Scientific Reports, 5(1): 626-628. |
JIN L, WANG J, GUAN F, ZHANG J P, YU S, LIU S Y, XUE Y Y, LI L L, WU S W, WANG X L, YANG Y H, ABDELGAFFAR H, JURAT-FUENTES J L, TABASHNIK B E, WU Y D. 2018. Dominant point mutation in a tetraspanin gene associated with field-evolved resistance of cotton bollworm to transgenic Bt cotton. Proceedings of the National Academy of Sciences of the United States of America, 115: 11760-11765. DOI:10.1073/pnas.1812138115 |
JIN M H, TAO J H, LI Q, CHENG Y, SUN X X, WU K M, XIAO Y T. 2021. Genome editing of the SfABCC2 gene confers resistance to Cry1F toxin from Bacillus thuringiensis in Spodoptera frugiperda. Journal of Integrative Agriculture, 20(3): 815-820. DOI:10.1016/S2095-3119(19)62772-3 |
JIN T T, DUAN X L, BRAVO A, SOBERÓN M, WANG Z Y, HE K L. 2015. Identification of an alkaline phosphatase as a putative Cry1Ac binding protein in Ostrinia furnacalis (Guenée). Pesticide Biochemistry and Physiology, 131: 80-86. |
JURAT-FUENTES J L, ADANG M J. 2006. Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae. Journal of Invertebrate Pathology, 92(3): 166-171. DOI:10.1016/j.jip.2006.01.010 |
KNIGHT P J K, CARROLL J, ELLAR D J. 2003. Analysis of glycan structures on the 120 kDa aminopeptidase N of Manduca sexta and their interactions with Bacillus thuringiensis Cry1Ac toxin. Insect Biochemistry and Molecular Biology, 34(1): 101-112. |
KNIGHT P J K, CRICKMORE N, ELLAR D J. 1994. The receptor for Bacillus thuringiensis CrylA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Molecular Microbiology, 11(3): 429-436. DOI:10.1111/j.1365-2958.1994.tb00324.x |
KNOWLES B H, ELLAR D J. 1987. Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxins with different insect specificity. BBA-General Subjects, 924(3): 509-518. DOI:10.1016/0304-4165(87)90167-X |
LEE M K, MILES P, CHEN J S. 2006. Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midguts. Biochemical and Biophysical Research Communications, 339(4): 1043-1047. DOI:10.1016/j.bbrc.2005.11.112 |
LI J H, MA Y M, YUAN W L, XIAO Y T, LIU C X, WANG J, PENG J X, PENG R, SOBERÓN M, BRAVO A, YANG Y B, LIU K Y. 2017. FOXA transcriptional factor modulates insect susceptibility to Bacillus thuringiensis Cry1Ac toxin by regulating the expression of toxin-receptor ABCC2 and ABCC3 genes. Insect Biochemistry and Molecular Biology, 88: 1-11. DOI:10.1016/j.ibmb.2017.07.004 |
LIU L L, CHEN Z W, YANG Y C, XIAO Y T, LIU C X, MA Y M, SOBERÓN M, BRAVO A, YANG Y B, LIU K Y. 2018. A single amino acid polymorphism in ABCC2 loop 1 is responsible for differential toxicity of Bacillus thuringiensis Cry1Ac toxin in different Spodoptera (Noctuidae) species. Insect Biochemistry and Molecular Biology, 100: 59-65. DOI:10.1016/j.ibmb.2018.06.004 |
LIU S Y, WANG S, WU S W, WU Y D, YANG Y H. 2020a. Proteolysis activation of Cry1Ac and Cry2Ab protoxins by larval midgut juice proteases from Helicoverpa armigera. PLoS ONE, 15(1): e0228159. DOI:10.1371/journal.pone.0228159 |
LIU Z X, FU S, MA X L, BAXTER S W, VASSEUR L, XIONG L, HUANG Y P, YANG G, YOU S J, YOU M S. 2020b. Resistance to Bacillus thuringiensis Cry1Ac toxin requires mutations in two Plutella xylostella ATP-binding cassette transporter paralogs. PLoS Pathogens, 16(8): e1008697. DOI:10.1371/journal.ppat.1008697 |
LU K Y, GU Y Q, LIU X P, LIN Y, YU X Q. 2017. Possible insecticidal mechanisms mediated by immune-response-related Cry-binding proteins in the midgut juice of Plutella xylostella and Spodoptera exigua. Journal of Agricultural and Food Chemistry, 65(10): 2048-2055. DOI:10.1021/acs.jafc.6b05769 |
LU Y J, ADANG M J. 1996. Conversion of Bacillus thuringiensis Cry1Ac-binding aminopeptidase to a soluble form by endogenous phosphatidylinositol phospholipase C. Insect Biochemistry and Molecular Biology, 26(1): 33-40. DOI:10.1016/0965-1748(95)00058-5 |
MA Y M, ZHANG J F, XIAO Y T, YANG Y C, LIU C X, PENG R, YANG Y B, BRAVO A, SOBERÓN M, LIU K Y. 2019. The cadherin Cry1Ac binding-region is necessary for the cooperative effect with ABCC2 transporter enhancing insecticidal activity of Bacillus thuringiensis Cry1Ac toxin. Toxins (Basel), 11(9): 538-555. DOI:10.3390/toxins11090538 |
MATHEW L G, PONNURAJ J, MALLAPPA B, CHOWDARY L R, ZHANG J W, TAY W T, WALSH T K, GORDON K H J, HECKEL D G, DOWNES S, CARRIÈRE Y, LI X C, TABASHNIK B E, FABRICK J A. 2018. ABC transporter mis-splicing associated with resistance to Bt toxin Cry2Ab in laboratory- and field-selected pink bollworm. Scientific Reports, 8(1): 13531-13545. DOI:10.1038/s41598-018-31840-5 |
MAUCHAMP B, ROYER C, GAREL A, JALABERT A, DA R M, GRENIER A M, LABAS V, VINH J, MITA K, KADONO K, CHAVANCY G. 2006. Polycalin (chlorophyllid A binding protein): a novel, very large fluorescent lipocalin from the midgut of the domestic silkworm Bombyx mori L. Insect Biochemistry and Molecular Biology, 36(8): 623-633. DOI:10.1016/j.ibmb.2006.05.006 |
NING C M, WU K M, LIU C X, GAO Y L, JURAT-FUENTES J L, GAO X W. 2010. Characterization of a Cry1Ac toxin-binding alkaline phosphatase in the midgut from Helicoverpa armigera (Hübner) larvae. Journal of Insect Physiology, 56(6): 666-672. DOI:10.1016/j.jinsphys.2010.02.003 |
NOLLET F, KOOLS P, VAN R F. 2000. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. Journal of Molecular Biology, 299(3): 551-572. DOI:10.1006/jmbi.2000.3777 |
OCELOTL J, SNCHEZ J, GMEZ I, TABASHNIK B E, BRAVO A, SOBERN M. 2017. ABCC2 is associated with Bacillus thuringiensis Cry1Ac toxin oligomerization and membrane insertion in diamondback moth. Scientific Reports, 7(1): 423-431. DOI:10.1038/s41598-017-00439-7 |
PIGOTT C R, ELLAR D J. 2007. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Reviews, 71(2): 255-281. DOI:10.1128/MMBR.00034-06 |
REN X L, HU H Y, JIANG W L, MA X Y, MA Y J, LI G Q, MA Y. 2017. Three GPI-anchored alkaline phosphatases are involved in the intoxication of Cry1Ca toxin to Spodoptera exigua larvae. Journal of Invertebrate Pathology, 151: 32-40. |
REN X L, JIANG W L, MA Y J, HU H Y, MA X Y, MA Y, LI G Q. 2016. The Spodoptera exigua (Lepidoptera: Noctuidae) ABCC2 mediates Cry1Ac cytotoxicity and, in conjunction with cadherin, contributes to enhance Cry1Ca toxicity in Sf9 cells. Journal of Economic Entomology, 109(6): 2281-2289. DOI:10.1093/jee/tow193 |
SANAHUJA G, BANAKAR R, TWYMAN R M, CAPELL T, CHRISTOU P. 2011. Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnology Journal, 9(3): 283-300. DOI:10.1111/j.1467-7652.2011.00595.x |
SCHNEPF E, CRICKMORE N, VAN RIE J, LERECLUS D, BAUM J, FEITELSON J, ZEIGLER D R, DEAN D H. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62(3): 775-806. DOI:10.1128/MMBR.62.3.775-806.1998 |
STEVENS T, SONG S S, BRUNING J B, CHOO A, BAXTER S W. 2017. Expressing a moth abcc2 gene in transgenic drosophila causes susceptibility to Bt Cry1Ac without requiring a cadherin-like protein receptor. Insect Biochemistry and Molecular Biology, 80: 61-70. DOI:10.1016/j.ibmb.2016.11.008 |
SUN Y J, YANG P, JIN H H, LIU H, ZHOU H, QIU L, LIN Y J, MA W H. 2020. Knockdown of the aminopeptidase N genes decreases susceptibility of Chilo suppressalis larvae to Cry1Ab/Cry1Ac and Cry1Ca. Pesticide Biochemistry and Physiology, 162: 36-42. DOI:10.1016/j.pestbp.2019.08.003 |
TABASHNIK B E, CUSHING N L, FINSON N, JOHNSON M W. 1990. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology, 83(5): 1671-1676. DOI:10.1093/jee/83.5.1671 |
TAKESUE S, YOKOTA K, MIYAJIMA S, TAGUCHI R, IKEZAWA H, TAKESUE Y. 1992. Partial release of aminopeptidase N from larval midgut cell membranes of the silkworm, Bombyx mori, by phosphatidylinositol-specific phospholipase C. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 102(1): 7-11. DOI:10.1016/0305-0491(92)90263-Q |
TANAKA S, ENDO H, ADEGAWA S, ⅡZUKA A, IMAMURA K, KIKUTA S, SATO R. 2017. Bombyx mori ABC transporter C2 structures responsible for the receptor function of Bacillus thuringiensis CrylAa toxin. Insect Biochemistry and Molecular Biology, 91: 44-54. DOI:10.1016/j.ibmb.2017.11.002 |
TANAKA S, MIYAMOTO K, NODA H, JURAT-FUENTES J L, YOSHIZAWA Y, ENDO H, SATO R. 2013. The ATP-binding cassette transporter subfamily C member 2 in Bombyx mori larvae is a functional receptor for Cry toxins from Bacillus thuringiensis. FEBS Journal, 280(8): 1782-1794. DOI:10.1111/febs.12200 |
VADLAMUDI R K, WEBER E, JI I, JI T H, BULLA L A. 1995. Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. Journal of Biological Chemistry, 270(10): 5490-5494. DOI:10.1074/jbc.270.10.5490 |
VIMALRAJ S. 2020. Alkaline phosphatase: structure, expression and its function in bone mineralization. Gene, 754: 144855-144862. DOI:10.1016/j.gene.2020.144855 |
WALSH T, JAMES B, CHAKROUN M, FERRÉ J, DOWNES S. 2018. Isolating, characterising and identifying a Cry1Ac resistance mutation in field populations of Helicoverpa punctigera. Scientific Reports, 8(1): 2626-2634. DOI:10.1038/s41598-018-21012-w |
WANG B J, WEI J Z, WANG Y N, CHEN L, LIANG G M. 2020a. Polycalin is involved in the toxicity and resistance to Cry1Ac toxin in Helicoverpa armigera (Hübner). Archives of Insect Biochemistry and Physiology, 104(1): e21661. |
WANG G R, WU K M, LIANG G M, GUO Y Y. 2005. Gene cloning and expression of cadherin in midgut of Helicoverpa armigera and its Cry1A binding region. Science in China Series C-life Sciences, 48(4): 346-356. DOI:10.1360/03yc0273 |
WANG J, ZUO Y Y, LI L L, WANG H, LIU S Y, YANG Y H, WU Y D. 2020b. Knockout of three aminopeptidase N genes does not affect susceptibility of Helicoverpa armigera larvae to Bacillus thuringiensis Cry1A and Cry2A toxins. Insect Science, 27(3): 440-448. DOI:10.1111/1744-7917.12666 |
WANG J, MA H H, ZHAO S, HUANG J L, YANG Y H, TABASHNIK B E, WU Y D. 2020c. Functional redundancy of two ABC transporter proteins in mediating toxicity of Bacillus thuringiensis to cotton bollworm. PLoS Pathogens, 16(3): e1008427. DOI:10.1371/journal.ppat.1008427 |
WANG J D, ZHANG J S, GUO Y F, CHEN L F, WANG F L, HUANG M T, GAO S J, WANG R. 2019c. Molecular cloning, characterization, and expression profiling analysis of Cry toxin receptor genes from sugarcane shoot borer Chilo infuscatellus (Snellen). Pesticide Biochemistry and Physiology, 157: 186-195. DOI:10.1016/j.pestbp.2019.03.023 |
WANG L, MA Y M, GUO X Q, WAN P, LIU K Y, CONG S B, WANG J T, XU D, XIAO Y T, LI X C, TABASHNIK B E, WU K M. 2019b. Pink bollworm resistance to Bt toxin Cry1Ac associated with an insertion in cadherin exon 20. Toxins, 11(4): 186-198. DOI:10.3390/toxins11040186 |
WANG L, MA Y M, WAN P, LIU K Y, XIAO Y T, WANG J T, CONG S B, XU D, WU K M, FABRICK J A, LI X C, TABASHNIK B E. 2018. Resistance to Bacillus thuringiensis linked with a cadherin transmembrane mutation affecting cellular trafficking in pink bollworm from China. Insect Biochemistry and Molecular Biology, 94: 28-35. DOI:10.1016/j.ibmb.2018.01.004 |
WANG L, WANG J T, MA Y M, WAN P, LIU K Y, CONG S B, XIAO Y T, XU D, WU K M, FABRICK J A, LI X C, TABASHNIK B E. 2019a. Transposon insertion causes cadherin mis-splicing and confers resistance to Bt cotton in pink bollworm from China. Scientific Reports, 9(1): 362-365. DOI:10.1038/s41598-018-36613-8 |
WANG L Y, GU S H, NANGONG Z Y, SONG P, WANG Q Y. 2017. Aminopeptidase N5 (APN5) as a putative functional receptor of Cry1Ac toxin in the larvae of Athetis lepigone. Current Microbiology, 74(4): 455-459. DOI:10.1007/s00284-017-1215-0 |
WANG S H, KAIN W, WANG P. 2018. Bacillus thuringiensis Cry1A toxins exert toxicity by multiple pathways in insects. Insect Biochemistry and Molecular Biology, 102: 59-66. DOI:10.1016/j.ibmb.2018.09.013 |
WEI J Z, YAO X, YANG S, LIU S K, ZHOU S, CEN J J, LIU X G, DU M F, TANG Q B, AN S H. 2021. Suppression of calcineurin enhances the toxicity of Cry1Ac to Helicoverpa armigera. Frontiers in Microbiology, 12: 634619. DOI:10.3389/fmicb.2021.634619 |
WEI J Z, ZHANG M, LIANG G M, LI X C. 2019. Alkaline phosphatase 2 is a functional receptor of Cry1Ac but not Cry2Ab in Helicoverpa zea. Insect Molecular Biology, 28(3): 372-379. DOI:10.1111/imb.12556 |
WEI J Z, ZHANG M, LIANG G M, WU K M, GUO Y Y, NI X Z, LI X C. 2016. APN1 is a functional receptor of Cry1Ac but not Cry2Ab in Helicoverpa zea. Science Reports, 6(1): 19179-19186. DOI:10.1038/srep19179 |
XIA J X, GUO Z J, YANG Z Z, ZHU X, KANG S, YANG X, YANG F S, WU Q J, WANG S L, XIE W, XU W J, ZHANG Y J. 2016. Proteomics-based identification of midgut proteins correlated with Cry1Ac resistance in Plutella xylostella (L.). Pesticide Biochemistry and Physiology, 132: 108-117. DOI:10.1016/j.pestbp.2016.01.002 |
XIAO Y T, DAI Q, HU R Q, PACHECO S, YANG Y B, LIANG G M, SOBERÓN M, BRAVO A, LIU K Y, WU K M. 2017. A single point mutation resulting in cadherin mislocalization underpins resistance against Bacillus thuringiensis toxin in cotton bollworm. Journal of Biological Chemistry, 292(7): 2933-2943. DOI:10.1074/jbc.M116.768671 |
XIE R Y, ZHUANG M B, ROSS L S, GOMEZ I, OLTEAN D I, BRAVO A, SOBERON M, GILL S S. 2005. Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to Cry1A toxins. Journal of Biological Chemistry, 280(9): 8416-8425. DOI:10.1074/jbc.M408403200 |
YAMAMOTO H, AZUMA M, EGUCHI M. 1991. Further characterization of alkaline phosphatase isozymes in the silkworm midgut: effects of amino acids and metal ions and comparison of sugar chains. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 99(2): 437-443. DOI:10.1016/0305-0491(91)90067-N |
ZHANG H N, YU S, SHI Y, YANG Y H, FABRICK J A, WU Y D. 2017a. Intra- and extracellular domains of the Helicoverpa armigera cadherin mediate Cry1Ac cytotoxicity. Insect Biochemistry and Molecular Biology, 86: 41-49. DOI:10.1016/j.ibmb.2017.05.004 |
ZHANG M, WEI J Z, NI X Z, ZHANG J, JURAT-FUENTES J L, FABRICK J A, CARRIÈRE Y, TABASHNIK B E, LI X C. 2019. Decreased Cry1Ac activation by midgut proteases associated with Cry1Ac resistance in Helicoverpa zea. Pest Management Science, 75(4): 1099-1106. DOI:10.1002/ps.5224 |
ZHANG T T, COATES B S, WANG Y Q, WANG Y D, BAI S X, WANG Z Y, HE K L. 2017b. Down-regulation of aminopeptidase N and ABC transporter subfamily G transcripts in Cry1Ab and Cry1Ac resistant Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae). International Journal of Biological Sciences, 13(7): 835-851. DOI:10.7150/ijbs.18868 |
ZHANG X, CANDAS M, GRIKO N B, ROSE-YOUNG L, BULLA L A. 2005. Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells. Cell Death Differ, 12(11): 1407-1416. DOI:10.1038/sj.cdd.4401675 |
ZHANG X B, CANDAS M, GRIKO N B, TAUSSIG RONALD, BULLA L A. 2006. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proceedings of the National Academy of Sciences of the United States of America, 103: 9897-9902. DOI:10.1073/pnas.0604017103 |
ZHOU Z S, WANG Z Y, LIU Y X, LIANG G M, SHU C L, SONG F P, ZHOU X P, BRAVO A, SOBERÓN M, ZHANG J. 2016. Identification of ABCC2 as a binding protein of Cry1Ac onbrush border membrane vesicles from Helicoverpa armigera by an improved pull-down assay. Microbiology Open, 5(4): 659-669. DOI:10.1002/mbo3.360 |
ZHU B, SUN X, NIE X M, LIANG P, GAO X W. 2010. MicroRNA-998-3p contributes to Cry1Ac-resistance by targeting ABCC2 in lepidopteran insects. Insect Biochemistry and Molecular Biology, 117: 103283-103300. |
ZHU Y C, BLANCO C A, PORTILLA M, ADAMCZYK J, LUTTRELL R, HUANG F. 2015. Evidence of multiple/cross resistance to Bt and organophosphate insecticides in Puerto Rico population of the fall armyworm, Spodoptera frugiperda. Pesticide Biochemistry and Physiology, 122: 15-21. DOI:10.1016/j.pestbp.2015.01.007 |